It’s been more than a year now since the theme of “green wizardry” became central to the posts here on The Archdruid Report, and I’ve pretty much covered the first two of the three themes I mean to discuss before it becomes time to shift the conversation elsewhere. We’ve discussed organic gardening and its associated arts, and we’ve discussed homescale energy production and conservation. At this point, before we go on to the third leg of the tripod, which used to be called “recycling” thirty years ago and deserves a more robust name now, I’d like to step back for a moment and talk a bit about strategy.
Yes, there’s a strategy underlying the selection of projects and possibilities I’ve been discussing here. The focus on Seventies-era organic gardening, appropriate technology, and the like is not merely a matter of nostalgia for a time when America seemed to be on the brink of taking its future seriously, before it collectively took the coward’s way out, nor is it simply a recognition that we don’t have a lot of time left and would be wise to concentrate on options that have already had the bugs worked out – though this latter may well be a point worth making. Rather, by some combination of prudence, prescience, and sheer dumb luck, the toolkit of ecotechnic options pieced together by the backyard farmers, basement inventors, shoestring-budget nonprofits and local government initiatives of that time happen to be very nearly uniquely suited to one of the dominant features of the future ahead of us.
To understand the way this works, it’s going to be necessary to look at some of the least welcoming features of that future, and that in turn is going to require a look back at a vision of history I first sketched out here years ago, and developed in more detail in the pages of my book The Ecotechnic Future. That look is going to require close attention to some of the least pleasant features of where we’re headed as a society. Unwelcome as that may be, it can’t be avoided, for it’s precisely as a response to the more troubling dimensions of our future that the strategy I have in mind has its place.
The fast version of the take on the future I want to discuss divides it up into four overlapping phases or periods, labeled according to the basic modes of economic production that predominate during each one. The first of these, the one in which most of us grew up and to which nearly all current political, economic and social thought is attuned, is abundance industrialism. This is the phase in which the supply of goods and services available to people in the world’s industrial nations by and large increases with each passing year. Yes, I know, it’s heresy to suggest this, but my take is that what drove that increase was not the growth of human knowledge, or any of the other comforting mantras offered by the publicists of science and industry over the last century or so. Rather, what drove it was simply an exponential increase in consumption of the Earth’s finite reserves of fossil fuels.
With the arrival of geological limits to fossil fuel production, we enter the second phase, scarcity industrialism. This is the phase in which the supply of goods and services available to people in the industrial nations peaks and begins to contract. According to mainstream economic doctrines, that can’t happen, which may be one of the reasons why we’ve become so good at ignoring it. Few people notice, for example, that most of what’s for sale in supermarkets is a little smaller and a little more shoddily made with every passing year, while the price stays level or creeps upwards; few people talk about the disappearance of scores of once-common services – try to get a perfectly good shoe with a worn heel repaired in most American cities nowadays – or think about the way that municipal services always seem to contract while the cost always seems to expand.
All these are part of the same process, the rise and fall of scarcity industrialism, which ends when the level of goods and services being produced drops below the level needed to support any kind of industrial system at all. After that come salvage societies, which no longer have the energy per capita that would be needed for industrial modes of production at all, and concentrate on extracting value from the legacy left behind by the industrial past. Later on – probably some centuries later – the salvage era winds down as the salvage runs out, and new societies depending on natural, renewable resources take their place. In a fit of optimism, I labeled this latter phase the ecotechnic era, and suggested that it could potentially see some amount of relatively advanced technology supported on a truly sustainable basis; I still think that’s possible, though it’s going to take quite a bit of work now, and even more in the centuries to come, to make it likely.
Still, it’s the age of scarcity industrialism that deserves close attention right now, since most of the world’s industrial nations are somewhere along the trajectory that leads there. It’s tough to make predictions, as Yogi Berra once pointed out, especially about the future. Some of the main features of developed societies in the age of scarcity industrialism aren’t too difficult to predict, though, partly because equivalent processes have happened before, and partly because some nations right now are much further along the trajectory than others and provide a useful glimpse ahead.
The role of social conflict is one of the features that’s fairly predictable. In an age of abundance, the easiest way to deal with social conflict is to buy off the disaffected. That’s how industrial societies over the last century came to provide welfare for the poor, mortgage guarantees and college grants for the middle class, subsidies for farmers, tax breaks for businesses – name a group that’s had enough political savvy to organize and raise a ruckus, and you can just as quickly name the arrangements by which they were paid off to minimize the risk of disruptions to the system. That was politically feasible in an expanding economy; even when the shares of the existing pie were grossly unequal, the fact that everyone could have at least a little more each year made those with smaller slices willing to work with the system in order to get their cut.
In an age of scarcity, that easy option no longer exists, and social conflicts heat up rapidly. That’s the unmentioned subtext for much of what’s going on in politics on both sides of the Atlantic just now. The middle class, who shrugged and turned its collective back when the working classes of Europe and America were thrown to the sharks thirty years ago, are now discovering to their horror that they’re next on the list, as the rentier class – the relatively privileged fraction of industrial society that makes its living from investments rather than salaries – struggles to maintain its prosperity at everyone else’s expense. (The middle class did exactly the same thing when it had the chance – ask any impoverished working class family in Pittsburgh or Glasgow – so sympathy cards sent their way may be misplaced.) The gutting of social safety nets, the slashing of salaries and benefits, and the impoverishment of millions of previously affluent people are part of that process, and lead to a rising spiral of social conflict that may well push a good many nations into crisis or collapse.
Not, it’s probably worth noting, into revolution. It’s an interesting detail of history that revolutions rarely happen in ages of decline; the classic recipe for revolution is an extended period of economic improvement for the bulk of the population, followed by a standstill or a reversal. (The government of China would do well to take note of this.) In times of decline, the class and group solidarity essential to an effective revolution dissolves into a scramble for slices of a shrinking pie, in which your own peers are usually your worst enemies. Mind you, social hierarchies get fed through a blender in times of decline; the former holders of wealth and power tolerably often end up starving in alleys if they don’t simply get their throats cut, while sufficiently ruthless individuals from well down the ladder can climb right up to the top. Sill, the general trend in ages of scarcity is that the circle of people who have access to wealth and privilege narrows step by step, leaving most of their former peers to scramble for scraps or to claw their way into the charmed circle by fair means or foul.
Now it might in theory be possible for a country to extract itself from this kind of spiral descent into the kind of social conflict that normally ends in some form of authoritarianism. The chance that the United States will manage such a last-minute save, though, is pretty slim at this point if it exists at all. We’re already seeing even the most basic services provided by local government slashed to a degree unequalled in the industrial world; what remains of a social safety net that was already an embarrassment among developed nations is pretty clearly headed for the chopping block; the machinery of government in state houses and Congress alike is jamming up as pressure groups of every kind launch increasingly frenzied efforts to cling to wealth and influence at everyone else’s expense. The "health care reform" pushed through by the Obama administration, a political absurdity meant to prop up a faltering medical-pharmaceutical industry by mandating that people who can’t afford health insurance have to pay for it anyway, is as good an example as any.
It’s not a pretty picture, and it’s unlikely to get any more attractive any time soon. Still, it’s important to understand why societies in decline so often plunge into this sort of self-defeating spiral. One of the major problems faced by any society in decline is the almost universal unwillingness of such societies to deal with the fact that they are indeed in decline. It’s a problem rather than a predicament; that is to say, it has a solution; but the solution – accepting that the glory days of the past are over, and that the new and unwelcome reality of contraction and limitation will be around for the foreseeable future – is normally accepted only after every other imaginable response or nonresponse is tried out, and found wanting. A rising spiral of absurd beliefs, grandiose projects, and violent political passions is a standard part of the evasive maneuvering that goes into avoiding that one necessary step, and we’ve got plenty of examples currently, of course.
Here again, though, we’re dealing with a problem rather than a predicament, because there’s at least one way out of the trap I’ve just outlined. The declining years of a rich and powerful society resemble nothing so much as a game of musical chairs in which, in the end, all the chairs will be taken away. What’s the winning strategy in a game in which everyone inevitably loses sooner or later? That’s a simpler question than it sounds: the way to win is not to play the game.
And that, in turn, is what we’ve been talking about for the last year: how not to play the game.
The struggles of the age of scarcity industrialism will focus with increasing bitterness and intensity on access to the remaining benefits of industrial society as we’ve known it – above all, the cheap abundant energy that powers automobiles and planes, keeps wall sockets supplied with electricity, brings foodstuffs and consumer goods from around the world, and provides the context and the income for jobs in the increasingly overlapping spheres of business, government, and the military. The struggles for these things, if historical equivalents are anything to go by, will focus on certain geographical and social battlefields and have increasingly limited effects anywhere else. Those who turn their backs on the things being fought over, and distance themselves from the battlefields, have a very good chance of staying clear of the resulting difficulties.
That’s what the green wizard toolkit is meant to do. Those who have a place in the country or can get one won’t have any need to depend on a faltering corporate food system for their daily meals; those who focus instead on the small-city approach will be able to supplement sacks of bulk grains and legumes from the farm belt with produce from a backyard garden, amplified with henhouse and/or rabbit hutch as circumstances permit. Those in either situation who know how to insulate and weatherize, and provide the small amount of energy they need from homescale sources, will be able to ignore the decline of the electrical grid. Those who learn how to get the things they need from salvage, instead of relying on global supply chains fed from rapidly depleting resource stocks, will be able to stand aside as what’s left of the global economy circles the drain and goes down it. Those who do these things, teach these things to neighbors and friends, and help build local networks of mutual exchange and support, will be creating the social frameworks of the next stage of the future – the stage of salvage societies – within the crumbling skeleton of the old industrial order.
Now it’s common enough, when a plan such as this is suggested, for people to insist that it’s all very well and good, but the government, or the corporations, or roving hordes of zombies, or somebody else equally colorful and convenient will inevitably come and take it all away. That seems logical, but it only seems logical because the people who suggest it haven’t grasped the implications of the toolkit I’ve been suggesting here. That is to say, they haven’t noticed that the lifestyles that are possible when your food comes from a backyard garden, your heat comes from a wood stove, and your job comes from refurbishing salvage of one kind or another, are not comfortable middle class American lifestyles, or anything like ithem.
What we are talking about, to borrow a phrase from Henry David Thoreau, is voluntary poverty. The founders of the modern movement of "voluntary simplicity" backed away uncomfortably from the noun in Thoreau’s phrase, and thereby did themselves and their movement a huge disservice; it’s all too easy to turn "voluntary simplicity" into a sales pitch for yet another round of allegedly simple products at fashionably high prices. The concept of voluntary poverty does not lend itself anything like so well to such evasions. The idea, Thoreau’s idea, is to deliberately embrace being poor, in every material sense, in order to avoid the common fate of being possessed by your possessions.
That’s a valid choice at any phase of history’s wheel, but it takes on a great deal more importance than usual in an age when being anything but poor makes you a target for practitioners of involuntary poverty who are fixated on scrambling over you on their way back up toward a fading vision of extravagant wealth. This is why monasticism works so well in the declining years of civilizations and the dark ages that follow them, for successful monastic traditions invariably embrace strict poverty. Having nothing to steal, they don’t need to worry about thieves, and a traditional habit of choosing locations well away from the centers of wealth and power is also worth noting – Monte Cassino in Italy, the Shaolin Monastery in China, and Koyasan in Japan, where St. Benedict, Bodhidharma, and Kobo Daishi respectively founded three of the world’s great monastic traditions, were all more or less in the middle of nowhere when the first simple dwellings were erected there.
What most Americans do not know, and have no interest in learning, is that it’s possible to be poor in relative comfort. (One of the advantages of a writer’s career, with its traditional slow start, is that I had ample opportunity to learn this.) The central secret of green wizardry is that one way to be poor and comfortable is to learn how to work with nature, so that natural processes take care of many of the needs you’d otherwise have to spend money to meet. The appropriate technology movement of the Seventies was predisposed to develop along this path by its roots in the Sixties counterculture, which however briefly and inconsistently held up the ideal of voluntary poverty to a mostly baffled consumer economy. Where most of today’s chatter about solar technology focuses on grid-tied PV systems, vast arrays of mirrors in the Nevada desert, solar satellites, and the like – all things that can be built only in an economy of abundance with resources to spare, and thus are useless in the future we’re facing – the equivalent talk in the Seventies as often as not focused on homebuilt solar water heaters, bsolar ovens, and other things that could be cobbled together in a basement out of salvaged materials, and thus are relevant to our time and the time ahead of us.
It’s quite possible that some of the things I’ve been discussing will end up being used in monasteries during the dark age that follows the decline and fall of our civilization. Still, that’s for the future to decide. The present concern, at least for me, is getting these things remembered in time to make it through the next forty or fifty years of crisis, the next step down on the road to that future dark age, as America’s global empire comes unglued and a nation used to living on a quarter of the world’s energy supply and a third of its industrial products gets to learn what it’s like to live on a great deal less. If the things we’ve been discussing here get pulled out of the dumpster where America puts its unwanted heritage, and are put to use by people who aren’t terrified of the concept of voluntary poverty, the Benedicts, Bodhidharmas, and Kobo Daishis of the future will at least have the option open to them, and so will a great many less exalted individuals whose lives could well be made happier and better by the application of a little ecotechnic knowledge and a few pieces of highly appropriate technology; and so, dear reader, may you.
Wednesday, June 29, 2011
Wednesday, June 22, 2011
Santa Isn't Bringing Gigawatts
Through the clouds of wishful thinking that too often make up what we are pleased to call a collective conversation on the subject of energy, a ray of common sense occasionally shines through. This week’s ray came by way of a study on the Earth’s thermodynamic balance, soon to be released in no less a scientific publication than the Proceedings of the Royal Society. The study found among other things that there’s a fairly modest upper limit to the amount of energy that wind farms can extract from the atmosphere without changing the climate.
So far, at least, the peak oil blogosphere hasn’t responded to this study at all. That’s not surprising, since the idea that renewable energy resources might also be subject to environmental limits is about as welcome in most alternative circles these days as a slug in a garden salad. These days, for many people who consider themselves environmentally conscious, a vision of giant wind turbines in serried ranks as far as the eye can see fills a pivotal emotional need; it allows them to pretend, at least to themselves, that it’s possible to support today’s extravagant lifestyles on renewable energy – to have our planet, one might say, and eat it too.
In the real world, things don’t work that way, but we’ve had a long vacation from having to deal with the real world. Three hundred years of ever-increasing production of fossil fuels have misled most of the population of the industrial world into thinking that it’s natural and normal to have as much cheap energy as you want and are willing to pay for. As petroleum production wobbles along a bumpy plateau and approaches the point of irreversible decline, and other fossil fuels move implacably toward their own peaks and declines, one of the prime necessities of sanity and survival involves unlearning the mental habits of the age of abundance, and coming to terms with the fact that all human activities are subject to ecological limits.
It’s as though we’re a bunch of children with very, very short memories, who wake up one morning to find that it’s Christmas Day and there are heaps of presents around the tree. Giddy with excitement, we open one package after another, revel in our shiny new toys, then delight in the holiday atmosphere of the rest of the day. As night falls, we doze off, thinking happily about how there will be another round of presents and another big meal the next day. Then the next day comes, and it’s not Christmas any more; search as we will, the area around the tree stubbornly refuses to yield any more presents, and if we strain our memories as far as they will reach, we might just remember that the other 364 days of the year follow different rules.
Especially in America, but not only in America, a great many people are basically sitting around on the day after Christmas, waiting for Santa Claus to show up with gigawatts of bright shiny new energy in his sack. The people who insist that we can keep our current lifestyles powered with giant wind farms or solar satellites or Bussard fusion reactors or free energy devices – thatt latter is what they’re calling perpetual motion machines these days, at least the last time I checked – are right in there with the folks who chant "Drill, baby, drill" in the fond belief that poking a hole somewhere in a continent that’s been more thoroughly prospected for oil than any other part of the Earth will somehow oblige the planet to fill ‘er up. I have too much respect for magic to dignify this sort of logic with the label of magical thinking; an initiate whose grasp of occult philosophy was that inept would be chucked out of any self-respecting magical lodge on the spot.
The realization that has to come is the realization that most current chatter about energy is trying desperately to avoid: that Santa isn’t bringing gigawatts or, if you prefer, that no law of nature guarantees us a steady supply of enough energy to maintain the fabulously extravagant habits of the recent past. Once people begin to grasp that the only meaningful answer to the question "What energy resources will allow us to keep the electricity grid running and cars on the road?" is "There aren’t any," it’s possible to ask a different question – "What energy resources will allow us to provide for the actual necessities and reasonable wants of human beings?" – and get a more useful answer.
That’s more or less the discussion I’ve been trying to further with the posts on energy here in recent months, in the course of surveying those ways of working with energy with which I have some personal experience—conservation first and foremost, but also homescale solar and wind power. There are also plenty of other other options that I haven’t worked with personally, and they also deserve to be brought into the discussion.
"Micro-hydro" and "mini-hydro," for example, are potentially options of great importance in the broad picture of a post-abundance energy future, but they’re not options I’ve explored personally. The "hydro" in each of these phrases, of course, is short for "hydroelectric;" micro-hydro is homescale hydroelectric power, usually produced by diverting a small amount of a stream or river on one’s property through a small turbine and using the latter to spin a generator. Back in the day there was a certain amount of work done with simple undershot waterwheels made from scrap metal, hooked up to truck alternators of the sort discussed in an earlier post on wind; I have no personal experience with how well these worked, but the concept may well be worth revisiting.
Mini-hydro is the next step up, hydroelectric power on the scale of a neighborhood or a rural town. Unlike what I suppose would have to be called mega-hydro, this doesn’t require damming up whole river basins, devastating fish runs, and the like; a small portion of a river’s flow or a small and steep stream provide the water, and the result under most circumstances is a supply of sustainably generated electricity that doesn’t suffer from the intermittency of sun and wind. Of course it depends on having the right kind of water resource close by your community, and that’s a good deal more common in some areas than others; it also requires a good deal more investment up front; but if you can get past those two obstacles, it’s hard to think of a better option.
Small amounts of electricity can be generated in a variety of other ways. Still, one of the great lessons that has to be grasped is that the thermodynamic costs of turning some other form of energy into electricity, and then turning the electricity back into some other form of energy such as rotary motion or heat, can be ignored only if you’ve got a half billion years or so of stored sunlight to burn. There are situations where those losses are worth accepting, but not that many of them, and if you can leave the energy in its original form and not take it through the detour into electricity, you’re usually better off.
Methane is an example. Methane production from manure on a small scale is a going concern in quite a few corners of the Third World; you need more raw material than a single human family will produce to get a worthwhile amount of gas, but small farms with livestock yield enough manure to keep a small kitchen stove fueled on this very renewable form of natural gas. (The residue still makes excellent raw material for compost, since only the carbon and hydrogen are involved in methane production; the nitrogen, phosphorus, potassium, and other plant nutrients come through the process untouched.) Since cooking fuel is higher on the list of basic human necessities than most things you can do with modest amounts of electricity, this is probably the best use for the technology.
Flatulence jokes aside, I don’t have any personal experience with small-scale methane production. Wood heat, on the other hand, is a technology I’ve worked with, and it’s probably going to be a major factor in the energy mix in North America in the future. It’s a simple, robust technology that works very well on the home scale – in fact, it’s not too easy to use it on any larger scale – and many wood stoves come with what’s called a waterback, which uses heat from the stove to heat domestic hot water. (Combine solar water heaters with a cooking stove equipped with a waterback, and you’ve basically got your hot water needs covered year round.) The problem here is that wood heat is a major cause of deforestation worldwide; whether or not too much windpower can mess with the climate, as the study referenced earlier in this post suggests, it’s a hard fact that too much harvesting of wood has devastated ecosystems over much of the world and caused a range of nasty blowbacks affecting human as well as biotic communities.
There’s at least one way around that problem, though it needs to be implemented soon and on a large scale A very old technique called coppicing allows for intensive production of firewood off a fairly small acreage. The trick to coppicing is that quite a few tree species, when cut down, produce several new shoots from the stump; these grow much more rapidly than the original tree, since they have their root system already well in place. When the shoots get to convenient firewood size, the coppicer cuts them again, and yet another set of shoots come up to repeat the process. I’ve dabbled in coppicing – the vine maple of the Pacific Northwest, which grows like a weed and produces decent firewood, made that easy enough, and other regions have their own equivalents. As other fuels run short, the owner of a few acres who uses it for coppicing and sells dry wood nicely sized for wood stoves may have a steady income, or at least a perennial source of barter, on his or her hands.
Biofuels such as ethanol and vegetable oils are another source of heat energy that will probably see a great deal of use in the future, though here again the limits on production are not always recognized. In a world with seven billion mouths to feed and an agricultural system at least as dependent on fossil fuels as any other part of industrial civilization, diverting any substantial portion of farmland from growing food to producing biofuels risks a substantial political backlash. I wonder how many of the proponents of biofuels production have thought through the consequences of a future in which the hazards of driving might just include being stopped by makeshift barricades and torn to pieces by an impoverished mob that is all too aware that every drop of ethanol or biodiesel in the tank represents food taken from the mouths of their children.
Biofuels are likely to play some role in the early stages of the end of the age of abundance, then, but thereafter, at least until the world’s human population and post-petroleum agriculture have settled down into some sort of equilibrium, it’s unlikely that this role will be very extensive. Later on, it’s anyone’s guess, and the answer will be up to the people of the twenty-fourth century and onward, not us.
Methane, wood, and sunlight, then, will probably account for the great majority of heat energy in common use in the centuries immediately ahead of us. What about mechanical energy? The breakthrough that launched the industrial revolution was the discovery that heat from burning coal could be turned into mechanical energy by way of a steam engine, and much of what sets our civilization apart from other civilizations in history is precisely the ability to put almost unimaginable amounts of mechanical energy to work. If a car with a 100-horsepower engine literally had to be pulled by a hundred horses, for example, and each of those horses required the care and feeding that horses do, the number of such cars on the roads would be a very small fraction of the present total.
There are good reasons, some historical and some pragmatic, to think that the major source of mechanical energy in the post-abundance future will be what it was in the pre-abundance past, that is, human and animal muscle, amplified by a variety of clever tools. If anything, some of the more ingenious inventions of the last few centuries make muscle power even more useful now, and in the centuries ahead of us, than it was before the first steam engine hissed and groaned its way into a new age of the world. The extraordinary efficiency with which a bicycle converts muscular effort into movement is a case in point. The relatively simple metallurgy and engineering needed to build a bicycle is very likely to survive into the far future, or to be reinvented after some more or less brief interval, and the sheer value of a technology that can move people and supplies a hundred miles a day on decent roads will hardly be lost on our descendants. It’s far from unlikely, for example, that wars will be won in the post-petroleum era by those nations that have the common sense to equip their infantry with bicycle transport.
More generally, the invention of really effective gears may turn out to be one of the nineteenth century’s great contributions to the future. The Roman world had some very complex machines using cogs and gears, but the designs used at that time did a poor job of transmitting power; gearing systems originally evolved in the late Middle Ages for clockwork underwent dramatic changes once steam power created the need to transfer mechanical motion as efficiently as possible from place to place and from one direction to another. Once invented, effective gears found their way back down the technological pyramid to the realm of hand tools; anyone who has ever compared beating egg whites with a spoon to doing so with a hand-cranked beater will have a very clear idea of the difference in effort that such simple mechanical devices make possible.
That difference may not seem like much in comparison to the gargantuan achievements of current fossil fuel-powered technology, or the even more grandiose fantasies served up by a good many of those who insist that the end of the age of petroleum must, by some kind of technological equivalent of manifest destiny, usher in the beginning of the age of some even more titanic energy resource. Still, if these claims amount to sitting around the chimney on December 26 waiting for Santa’s boots to appear – and I think a very good case can be made for the comparison – it’s past time to shelve the fantasies of limitless energy and the hubris that goes with them, and start paying attention to the tools, technologies, and modest but real energy sources that can actually have a positive impact on human existence in an age when only natural phenomena have gigawatts at their disposal any more.
So far, at least, the peak oil blogosphere hasn’t responded to this study at all. That’s not surprising, since the idea that renewable energy resources might also be subject to environmental limits is about as welcome in most alternative circles these days as a slug in a garden salad. These days, for many people who consider themselves environmentally conscious, a vision of giant wind turbines in serried ranks as far as the eye can see fills a pivotal emotional need; it allows them to pretend, at least to themselves, that it’s possible to support today’s extravagant lifestyles on renewable energy – to have our planet, one might say, and eat it too.
In the real world, things don’t work that way, but we’ve had a long vacation from having to deal with the real world. Three hundred years of ever-increasing production of fossil fuels have misled most of the population of the industrial world into thinking that it’s natural and normal to have as much cheap energy as you want and are willing to pay for. As petroleum production wobbles along a bumpy plateau and approaches the point of irreversible decline, and other fossil fuels move implacably toward their own peaks and declines, one of the prime necessities of sanity and survival involves unlearning the mental habits of the age of abundance, and coming to terms with the fact that all human activities are subject to ecological limits.
It’s as though we’re a bunch of children with very, very short memories, who wake up one morning to find that it’s Christmas Day and there are heaps of presents around the tree. Giddy with excitement, we open one package after another, revel in our shiny new toys, then delight in the holiday atmosphere of the rest of the day. As night falls, we doze off, thinking happily about how there will be another round of presents and another big meal the next day. Then the next day comes, and it’s not Christmas any more; search as we will, the area around the tree stubbornly refuses to yield any more presents, and if we strain our memories as far as they will reach, we might just remember that the other 364 days of the year follow different rules.
Especially in America, but not only in America, a great many people are basically sitting around on the day after Christmas, waiting for Santa Claus to show up with gigawatts of bright shiny new energy in his sack. The people who insist that we can keep our current lifestyles powered with giant wind farms or solar satellites or Bussard fusion reactors or free energy devices – thatt latter is what they’re calling perpetual motion machines these days, at least the last time I checked – are right in there with the folks who chant "Drill, baby, drill" in the fond belief that poking a hole somewhere in a continent that’s been more thoroughly prospected for oil than any other part of the Earth will somehow oblige the planet to fill ‘er up. I have too much respect for magic to dignify this sort of logic with the label of magical thinking; an initiate whose grasp of occult philosophy was that inept would be chucked out of any self-respecting magical lodge on the spot.
The realization that has to come is the realization that most current chatter about energy is trying desperately to avoid: that Santa isn’t bringing gigawatts or, if you prefer, that no law of nature guarantees us a steady supply of enough energy to maintain the fabulously extravagant habits of the recent past. Once people begin to grasp that the only meaningful answer to the question "What energy resources will allow us to keep the electricity grid running and cars on the road?" is "There aren’t any," it’s possible to ask a different question – "What energy resources will allow us to provide for the actual necessities and reasonable wants of human beings?" – and get a more useful answer.
That’s more or less the discussion I’ve been trying to further with the posts on energy here in recent months, in the course of surveying those ways of working with energy with which I have some personal experience—conservation first and foremost, but also homescale solar and wind power. There are also plenty of other other options that I haven’t worked with personally, and they also deserve to be brought into the discussion.
"Micro-hydro" and "mini-hydro," for example, are potentially options of great importance in the broad picture of a post-abundance energy future, but they’re not options I’ve explored personally. The "hydro" in each of these phrases, of course, is short for "hydroelectric;" micro-hydro is homescale hydroelectric power, usually produced by diverting a small amount of a stream or river on one’s property through a small turbine and using the latter to spin a generator. Back in the day there was a certain amount of work done with simple undershot waterwheels made from scrap metal, hooked up to truck alternators of the sort discussed in an earlier post on wind; I have no personal experience with how well these worked, but the concept may well be worth revisiting.
Mini-hydro is the next step up, hydroelectric power on the scale of a neighborhood or a rural town. Unlike what I suppose would have to be called mega-hydro, this doesn’t require damming up whole river basins, devastating fish runs, and the like; a small portion of a river’s flow or a small and steep stream provide the water, and the result under most circumstances is a supply of sustainably generated electricity that doesn’t suffer from the intermittency of sun and wind. Of course it depends on having the right kind of water resource close by your community, and that’s a good deal more common in some areas than others; it also requires a good deal more investment up front; but if you can get past those two obstacles, it’s hard to think of a better option.
Small amounts of electricity can be generated in a variety of other ways. Still, one of the great lessons that has to be grasped is that the thermodynamic costs of turning some other form of energy into electricity, and then turning the electricity back into some other form of energy such as rotary motion or heat, can be ignored only if you’ve got a half billion years or so of stored sunlight to burn. There are situations where those losses are worth accepting, but not that many of them, and if you can leave the energy in its original form and not take it through the detour into electricity, you’re usually better off.
Methane is an example. Methane production from manure on a small scale is a going concern in quite a few corners of the Third World; you need more raw material than a single human family will produce to get a worthwhile amount of gas, but small farms with livestock yield enough manure to keep a small kitchen stove fueled on this very renewable form of natural gas. (The residue still makes excellent raw material for compost, since only the carbon and hydrogen are involved in methane production; the nitrogen, phosphorus, potassium, and other plant nutrients come through the process untouched.) Since cooking fuel is higher on the list of basic human necessities than most things you can do with modest amounts of electricity, this is probably the best use for the technology.
Flatulence jokes aside, I don’t have any personal experience with small-scale methane production. Wood heat, on the other hand, is a technology I’ve worked with, and it’s probably going to be a major factor in the energy mix in North America in the future. It’s a simple, robust technology that works very well on the home scale – in fact, it’s not too easy to use it on any larger scale – and many wood stoves come with what’s called a waterback, which uses heat from the stove to heat domestic hot water. (Combine solar water heaters with a cooking stove equipped with a waterback, and you’ve basically got your hot water needs covered year round.) The problem here is that wood heat is a major cause of deforestation worldwide; whether or not too much windpower can mess with the climate, as the study referenced earlier in this post suggests, it’s a hard fact that too much harvesting of wood has devastated ecosystems over much of the world and caused a range of nasty blowbacks affecting human as well as biotic communities.
There’s at least one way around that problem, though it needs to be implemented soon and on a large scale A very old technique called coppicing allows for intensive production of firewood off a fairly small acreage. The trick to coppicing is that quite a few tree species, when cut down, produce several new shoots from the stump; these grow much more rapidly than the original tree, since they have their root system already well in place. When the shoots get to convenient firewood size, the coppicer cuts them again, and yet another set of shoots come up to repeat the process. I’ve dabbled in coppicing – the vine maple of the Pacific Northwest, which grows like a weed and produces decent firewood, made that easy enough, and other regions have their own equivalents. As other fuels run short, the owner of a few acres who uses it for coppicing and sells dry wood nicely sized for wood stoves may have a steady income, or at least a perennial source of barter, on his or her hands.
Biofuels such as ethanol and vegetable oils are another source of heat energy that will probably see a great deal of use in the future, though here again the limits on production are not always recognized. In a world with seven billion mouths to feed and an agricultural system at least as dependent on fossil fuels as any other part of industrial civilization, diverting any substantial portion of farmland from growing food to producing biofuels risks a substantial political backlash. I wonder how many of the proponents of biofuels production have thought through the consequences of a future in which the hazards of driving might just include being stopped by makeshift barricades and torn to pieces by an impoverished mob that is all too aware that every drop of ethanol or biodiesel in the tank represents food taken from the mouths of their children.
Biofuels are likely to play some role in the early stages of the end of the age of abundance, then, but thereafter, at least until the world’s human population and post-petroleum agriculture have settled down into some sort of equilibrium, it’s unlikely that this role will be very extensive. Later on, it’s anyone’s guess, and the answer will be up to the people of the twenty-fourth century and onward, not us.
Methane, wood, and sunlight, then, will probably account for the great majority of heat energy in common use in the centuries immediately ahead of us. What about mechanical energy? The breakthrough that launched the industrial revolution was the discovery that heat from burning coal could be turned into mechanical energy by way of a steam engine, and much of what sets our civilization apart from other civilizations in history is precisely the ability to put almost unimaginable amounts of mechanical energy to work. If a car with a 100-horsepower engine literally had to be pulled by a hundred horses, for example, and each of those horses required the care and feeding that horses do, the number of such cars on the roads would be a very small fraction of the present total.
There are good reasons, some historical and some pragmatic, to think that the major source of mechanical energy in the post-abundance future will be what it was in the pre-abundance past, that is, human and animal muscle, amplified by a variety of clever tools. If anything, some of the more ingenious inventions of the last few centuries make muscle power even more useful now, and in the centuries ahead of us, than it was before the first steam engine hissed and groaned its way into a new age of the world. The extraordinary efficiency with which a bicycle converts muscular effort into movement is a case in point. The relatively simple metallurgy and engineering needed to build a bicycle is very likely to survive into the far future, or to be reinvented after some more or less brief interval, and the sheer value of a technology that can move people and supplies a hundred miles a day on decent roads will hardly be lost on our descendants. It’s far from unlikely, for example, that wars will be won in the post-petroleum era by those nations that have the common sense to equip their infantry with bicycle transport.
More generally, the invention of really effective gears may turn out to be one of the nineteenth century’s great contributions to the future. The Roman world had some very complex machines using cogs and gears, but the designs used at that time did a poor job of transmitting power; gearing systems originally evolved in the late Middle Ages for clockwork underwent dramatic changes once steam power created the need to transfer mechanical motion as efficiently as possible from place to place and from one direction to another. Once invented, effective gears found their way back down the technological pyramid to the realm of hand tools; anyone who has ever compared beating egg whites with a spoon to doing so with a hand-cranked beater will have a very clear idea of the difference in effort that such simple mechanical devices make possible.
That difference may not seem like much in comparison to the gargantuan achievements of current fossil fuel-powered technology, or the even more grandiose fantasies served up by a good many of those who insist that the end of the age of petroleum must, by some kind of technological equivalent of manifest destiny, usher in the beginning of the age of some even more titanic energy resource. Still, if these claims amount to sitting around the chimney on December 26 waiting for Santa’s boots to appear – and I think a very good case can be made for the comparison – it’s past time to shelve the fantasies of limitless energy and the hubris that goes with them, and start paying attention to the tools, technologies, and modest but real energy sources that can actually have a positive impact on human existence in an age when only natural phenomena have gigawatts at their disposal any more.
Wednesday, June 15, 2011
Profligacies of Scale
The logic applied in last week’s post to photovoltaic solar power can be applied more generally to a fairly wide range of technologies that can, under the right circumstances, provide a modest supply of electricity to power those things for which electricity is really the most sensible power source. I want to talk about a couple of those in tthe weeks to come, partly for the sake of completeness, partly because the options I have in mind offer some distinct advantages, and partly because touching on a series of examples will make it easier to grasp certain common themes that aren’t often addressed on those rare occasions when discussions of the future of technology manage to make it out of the realm of popular mythology in the first place.
I don’t mean that last comment as a joke, by the way. If mythology can be defined as the set of stories that people in a given society use to make sense of the universe and themselves, contemporary beliefs about the future of technology in the cultural mainstream of the industrial world fill that role, doubled, tripled, and in spades. Those of my readers who have come to take the challenge of peak oil seriously, and tried to discuss it with family members, coworkers, and friends who haven’t yet grappled with the issues themselves, can testify just how forcefully most of these latter cling to the belief that some technological gimmick or other will bail us out.
Technology, for a great people nowadays, is their source of meaning and their hope of salvation. Most liberals, conservatives, atheists, and plenty of people who think they belong to some other religion all put their trust in the great god Progress and wait prayerfully for him to bring a future that, they insist, must be better than the present. However poorly founded that faith may be, it plays an immensely important role in today’s industrial cultures, and the death of Progress in our time thus bids fair to deal the same shattering blow to our present certainties that the death of God announced by Nietzsche measured out to the equally comfortably certainties of the nineteenth century.
If anything, the approaching experience may be the harsher of the two. What Nietzche was saying, stripped of his ornate imagery, was that the people of Europe in his time no longer believed in the Christian myths and doctrines they claimed to accept, and needed to own up to the anthropocentric cult of power that had become their actual religion. That may have been true; still, it’s one thing to realize that you no longer believe things you were raised to think were good and right and true; it’s quite another, and far more devastating, to believe in something with all your heart and have it disproved right in front of your eyes. The religion of progress claims to be justified by works, not faith; during the three centuries or so of technological expansion, the apparent confirmation of the myth gave it immense strength; as the age of progress ends and we enter on three centuries or more of technological regress, the resulting body blow to our culture’s fondest beliefs and hopes will dominate the cultural psychology of an age.
It’s the effort to avoid that profoundly unwelcome experience that drives current attempts to insist that we can maintain our contemporary lifestyles, and even provide them to the population of the world’s nonindustrialized (and never to be industrialized) countries, using renewable energy sources. That same effort drives plenty of other exercises in futility, to be sure, and many of them are a good deal more dysfunctional than the dream of a world of middle class comforts powered by wind turbines and solar panels. Still, if we’re going to get beyond the mythology of a dying religion and talk about the future in more useful terms, it’s crucial to start by owning up to the fact that renewable sources are not going to allow anyone to maintain the kind of extravagant energy-wasting lifestyle that most people in the industrial world think of as normal.
What they can do instead is rather more valuable. There are certain technologies that are either dependent on electricity, or are easiest to provide using electricity, that contribute mightily to human welfare. (Long range radio communication is an example of the first kind; refrigeration for food storage is an example of the second.) If these technologies can get through the present crisis in a sustainable form, they will contribute to human welfare as far into the future as you care to look. Renewable energy sources that provide a modest amount of electricity on a local scale can keep a good many of these technologies going, and if enough people here and now either learn how to build and maintain renewable systems on that scale, on the one hand, or learn how to build and maintain the technologies themselves on the same modest and local scale, on the other, our civilization may actually accomplish the surprisingly rare feat of adding something worthwhile to the long-term toolkit of our species.
The modest amount and the local scale are vital to any such project. Right now, anyone with a fairly good set of hand tools and a good general knowledge of electricity, carpentry, and metalworking can build a wind turbine for a few hundred dollars. I can say this with some confidence because I helped do exactly that, for a good deal less, while at college in the early 1980s. The turbine itself was basically a two-blade propeller cut, shaped, and sanded from a block of fir; the conversion of rotary motion to electricity was done by an alternator salvaged from an old truck; the tail that kept it facing into the wind, the safety shutoff that swung it out of the path of the wind when the wind velocity got too high, and the tricky doodad that allowed it to turn freely while still getting electricity down to the batteries in the little shed at the base, were all fabricated out of scrap parts and sheet metal. We used a disused power pole to put the turbine up where the wind blew freely, but if that hadn’t been there, an octet truss tower – one of Bucky Fuller’s better designs – could easily have been put together out of readily available hardware and bolted onto a hand-poured concrete foundation.
The design wasn’t original, not by a long shot; half a dozen old appropriate tech books from the Seventies have the same design or its kissing cousin, and it’s one of a half dozen or so standard designs that came out of the ferment of those years. The most important difference was between horizontal axis from vertical axis models. A horizontal axis wind turbine is the kind most people think of, with blades like a propeller facing into the wind and a tail or some other gimmick to pivot it around in the right direction. A vertical axis wind turbine is less familiar these days, though you used to see examples all over the place back in the day; the business end looked either like one side of an eggbeater – the Darreius turbine – or an oil drum cut in half lengthwise, and the two sides staggered around the vertical shaft – the Savonius turbine. Some of the standard designs yielded high speed and low torque, which is what you want for generating electricity; some of them produced high torque and low speed, which is what you want for pumping water or most other uses of mechanical power.
All the information needed to design and build one or more of the standard models is easy to come by nowadays – literally dozens of books from the time cover the basic concepts, and it’s far from hard to find detailed plans for building your own. It’s also not too difficult for those who lack the basic technical skills to find small wind turbines of quite respectable quality for sale, though the price is going to be a good deal more than you’d shell out for an old truck alternator, a chunk of fir six feet by eight inches by four inches, and the rest of the hardware we used to cobble together our turbine. Either way, if you live in an area with average winds and your home isn’t surrounded by tall trees, steep hills, or skyscrapers, your odds of being able to run a respectable 12 volt system are pretty good.
Still, it will come as no surprise to regular readers of this blog that very little of this wealth of practical information receives much in the way of attention nowadays. Instead, the concept of wind power has been monopolized by a recently minted industry devoted to building, servicing, and promoting giant wind turbines that provide electricity to the grid. The giant turbines have their virtues, no question; compared to most other energy production technologies, certainly, they’re safe and clean, and their net energy yield is a respectable 8 or 9 to 1, which beats the stuffing out of most other alternative energy sources. Still, the idea that serried ranks of giant wind turbines will enable us all to keep on using energy at today’s extravagant rates runs headlong into at least two difficulties.
The first difficulty is intermittency. A wind turbine, obviously enough, produces power only when the wind is blowing, and it’s a safe bet that no matter where you put turbines, the wind won’t always be blowing. That wouldn’t be a problem at all if Americans were used to using electricity when it happens to be available, and doing something else with their time when it’s not, but that’s not the way Americans do things any more. Just now, intermittency isn’t much of a problem, since modern gas-fired power plants can be cycled up and down promptly to respond to any shortage of power from the turbines, but if your plan is to replace the gas-fired plants (and the coal-fired ones, which can’t be cycled up and down so quickly) with wind turbines, you’ve got a problem. You have an even bigger problem if you want to rely on solar as well as wind, since then you’re dependent on two intermittent energy sources, and when they both go down at the same time – as, by Murphy’s law, they inevitably will – you’re left with no power going into the grid at all.
The second difficulty, as discussed in previous posts here, is complexity. Those giant turbines, it bears remembering, are not made out of spare truck alternators, blocks of fir, and other readily accessible and easily managed parts. They are triumphs of modern engineering, which means in practice that they depend on baroque supply chains, high-tech manufacturing processes, and massive investment, not to mention plenty of fossil fuels and, more generally, a society that has plenty of cheap energy to spare for projects on a gargantuan scale. Nor is a giant wind turbine sitting all by itself on a hilltop particularly useful to much of anyone; it gains its economic viability through connection to the electrical grid, which is itself an immense technostructure with its own even more sprawling supply, manufacturing, and investment requirements. If industrial society finds itself unable to maintain any one of the factors that make the grid and the giant turbines possible, then it doesn’t matter how useful they might be; they won’t be around.
Homescale windpower systems suffer from the intermittency issue, but then so does nearly every other option for providing electricity on that scale, and we’ve already discussed at some length the solution to it: get used to using electricity when it’s available, or to storing up modest amounts of it in inexpensive storage batteries and using that supply sparingly. The challenge of complexity, on the other hand, is not something a homescale windpower system has to deal with at all. Even in the absence of salvageable alternators, and there are quite literally hundreds of millions of them lying unused in junkyards across the United States, a generator that will turn rotary motion into direct current is not a challenging project. I built a simple one in elementary school, for example, and although it wasn’t really suited to wind turbine use – most of the structural elements were made from paperclips, with a toy horseshoe magnet to provide the field, and the amount of current it produced was just about enough to get a decent glow out of a very small light bulb – the principle can readily be scaled up.
In the kind of future we can realistically expect, in other words, homescale windpower will almost certainly be a viable technology, while giant wind turbines of the modern sort almost certainly won’t. Now of course it’s a safe bet that the windpower industry as it now exists will keep on building, servicing, and promoting giant wind turbines as long as it’s possible to do so, so the small chance that the giant turbines might actually be viable is covered. What isn’t covered yet is the very large chance that small wind turbines of the sort that can be built and maintained in a basement workshop could provide a real benefit during the difficult decades ahead of us.
In order to respond to that range of possibilities, homescale windpower units need to find their way back into the conversation of our time and, more importantly, up above the rooftops of homes across the modern world. Professionally manufactured wind turbines of the right scale are a good start, and those green wizards in training who have the money and lack the fairly modest technical skills to build their own could do worse than to buy and install one. Still, there’s also a huge role here for the homebuilt turbine, and for those individuals whose willingness to get to work shaping turbine blades and bolting together octet truss towers might, as things unfold, lead to a future career.
Promoters of giant wind turbines, and for that matter of centralized power generation schemes of all kinds, tend to talk quite a bit about economies of scale. In an expanding economy with a stable or growing resource base, that sort of talk often makes sense, though the extent to which those economies of scale are a product of direct and indirect government subsidies to transportation, financing, and large businesses generally is not something economists like to talk about. Still, in a world facing economic contraction, resource depletion, and a loss of complexity potentially capable of rendering a great deal of today’s infrastructure useless or worse, the balance swings the other way. In the face of a future where small, cheap, localized approaches that are sparing in their use of resources, relying on massive, expensive, centralized, resource-intensive power plants of any kind is not an economy but a profligacy of scale, and one that we very probably will not be able to afford for much longer.
I don’t mean that last comment as a joke, by the way. If mythology can be defined as the set of stories that people in a given society use to make sense of the universe and themselves, contemporary beliefs about the future of technology in the cultural mainstream of the industrial world fill that role, doubled, tripled, and in spades. Those of my readers who have come to take the challenge of peak oil seriously, and tried to discuss it with family members, coworkers, and friends who haven’t yet grappled with the issues themselves, can testify just how forcefully most of these latter cling to the belief that some technological gimmick or other will bail us out.
Technology, for a great people nowadays, is their source of meaning and their hope of salvation. Most liberals, conservatives, atheists, and plenty of people who think they belong to some other religion all put their trust in the great god Progress and wait prayerfully for him to bring a future that, they insist, must be better than the present. However poorly founded that faith may be, it plays an immensely important role in today’s industrial cultures, and the death of Progress in our time thus bids fair to deal the same shattering blow to our present certainties that the death of God announced by Nietzsche measured out to the equally comfortably certainties of the nineteenth century.
If anything, the approaching experience may be the harsher of the two. What Nietzche was saying, stripped of his ornate imagery, was that the people of Europe in his time no longer believed in the Christian myths and doctrines they claimed to accept, and needed to own up to the anthropocentric cult of power that had become their actual religion. That may have been true; still, it’s one thing to realize that you no longer believe things you were raised to think were good and right and true; it’s quite another, and far more devastating, to believe in something with all your heart and have it disproved right in front of your eyes. The religion of progress claims to be justified by works, not faith; during the three centuries or so of technological expansion, the apparent confirmation of the myth gave it immense strength; as the age of progress ends and we enter on three centuries or more of technological regress, the resulting body blow to our culture’s fondest beliefs and hopes will dominate the cultural psychology of an age.
It’s the effort to avoid that profoundly unwelcome experience that drives current attempts to insist that we can maintain our contemporary lifestyles, and even provide them to the population of the world’s nonindustrialized (and never to be industrialized) countries, using renewable energy sources. That same effort drives plenty of other exercises in futility, to be sure, and many of them are a good deal more dysfunctional than the dream of a world of middle class comforts powered by wind turbines and solar panels. Still, if we’re going to get beyond the mythology of a dying religion and talk about the future in more useful terms, it’s crucial to start by owning up to the fact that renewable sources are not going to allow anyone to maintain the kind of extravagant energy-wasting lifestyle that most people in the industrial world think of as normal.
What they can do instead is rather more valuable. There are certain technologies that are either dependent on electricity, or are easiest to provide using electricity, that contribute mightily to human welfare. (Long range radio communication is an example of the first kind; refrigeration for food storage is an example of the second.) If these technologies can get through the present crisis in a sustainable form, they will contribute to human welfare as far into the future as you care to look. Renewable energy sources that provide a modest amount of electricity on a local scale can keep a good many of these technologies going, and if enough people here and now either learn how to build and maintain renewable systems on that scale, on the one hand, or learn how to build and maintain the technologies themselves on the same modest and local scale, on the other, our civilization may actually accomplish the surprisingly rare feat of adding something worthwhile to the long-term toolkit of our species.
The modest amount and the local scale are vital to any such project. Right now, anyone with a fairly good set of hand tools and a good general knowledge of electricity, carpentry, and metalworking can build a wind turbine for a few hundred dollars. I can say this with some confidence because I helped do exactly that, for a good deal less, while at college in the early 1980s. The turbine itself was basically a two-blade propeller cut, shaped, and sanded from a block of fir; the conversion of rotary motion to electricity was done by an alternator salvaged from an old truck; the tail that kept it facing into the wind, the safety shutoff that swung it out of the path of the wind when the wind velocity got too high, and the tricky doodad that allowed it to turn freely while still getting electricity down to the batteries in the little shed at the base, were all fabricated out of scrap parts and sheet metal. We used a disused power pole to put the turbine up where the wind blew freely, but if that hadn’t been there, an octet truss tower – one of Bucky Fuller’s better designs – could easily have been put together out of readily available hardware and bolted onto a hand-poured concrete foundation.
The design wasn’t original, not by a long shot; half a dozen old appropriate tech books from the Seventies have the same design or its kissing cousin, and it’s one of a half dozen or so standard designs that came out of the ferment of those years. The most important difference was between horizontal axis from vertical axis models. A horizontal axis wind turbine is the kind most people think of, with blades like a propeller facing into the wind and a tail or some other gimmick to pivot it around in the right direction. A vertical axis wind turbine is less familiar these days, though you used to see examples all over the place back in the day; the business end looked either like one side of an eggbeater – the Darreius turbine – or an oil drum cut in half lengthwise, and the two sides staggered around the vertical shaft – the Savonius turbine. Some of the standard designs yielded high speed and low torque, which is what you want for generating electricity; some of them produced high torque and low speed, which is what you want for pumping water or most other uses of mechanical power.
All the information needed to design and build one or more of the standard models is easy to come by nowadays – literally dozens of books from the time cover the basic concepts, and it’s far from hard to find detailed plans for building your own. It’s also not too difficult for those who lack the basic technical skills to find small wind turbines of quite respectable quality for sale, though the price is going to be a good deal more than you’d shell out for an old truck alternator, a chunk of fir six feet by eight inches by four inches, and the rest of the hardware we used to cobble together our turbine. Either way, if you live in an area with average winds and your home isn’t surrounded by tall trees, steep hills, or skyscrapers, your odds of being able to run a respectable 12 volt system are pretty good.
Still, it will come as no surprise to regular readers of this blog that very little of this wealth of practical information receives much in the way of attention nowadays. Instead, the concept of wind power has been monopolized by a recently minted industry devoted to building, servicing, and promoting giant wind turbines that provide electricity to the grid. The giant turbines have their virtues, no question; compared to most other energy production technologies, certainly, they’re safe and clean, and their net energy yield is a respectable 8 or 9 to 1, which beats the stuffing out of most other alternative energy sources. Still, the idea that serried ranks of giant wind turbines will enable us all to keep on using energy at today’s extravagant rates runs headlong into at least two difficulties.
The first difficulty is intermittency. A wind turbine, obviously enough, produces power only when the wind is blowing, and it’s a safe bet that no matter where you put turbines, the wind won’t always be blowing. That wouldn’t be a problem at all if Americans were used to using electricity when it happens to be available, and doing something else with their time when it’s not, but that’s not the way Americans do things any more. Just now, intermittency isn’t much of a problem, since modern gas-fired power plants can be cycled up and down promptly to respond to any shortage of power from the turbines, but if your plan is to replace the gas-fired plants (and the coal-fired ones, which can’t be cycled up and down so quickly) with wind turbines, you’ve got a problem. You have an even bigger problem if you want to rely on solar as well as wind, since then you’re dependent on two intermittent energy sources, and when they both go down at the same time – as, by Murphy’s law, they inevitably will – you’re left with no power going into the grid at all.
The second difficulty, as discussed in previous posts here, is complexity. Those giant turbines, it bears remembering, are not made out of spare truck alternators, blocks of fir, and other readily accessible and easily managed parts. They are triumphs of modern engineering, which means in practice that they depend on baroque supply chains, high-tech manufacturing processes, and massive investment, not to mention plenty of fossil fuels and, more generally, a society that has plenty of cheap energy to spare for projects on a gargantuan scale. Nor is a giant wind turbine sitting all by itself on a hilltop particularly useful to much of anyone; it gains its economic viability through connection to the electrical grid, which is itself an immense technostructure with its own even more sprawling supply, manufacturing, and investment requirements. If industrial society finds itself unable to maintain any one of the factors that make the grid and the giant turbines possible, then it doesn’t matter how useful they might be; they won’t be around.
Homescale windpower systems suffer from the intermittency issue, but then so does nearly every other option for providing electricity on that scale, and we’ve already discussed at some length the solution to it: get used to using electricity when it’s available, or to storing up modest amounts of it in inexpensive storage batteries and using that supply sparingly. The challenge of complexity, on the other hand, is not something a homescale windpower system has to deal with at all. Even in the absence of salvageable alternators, and there are quite literally hundreds of millions of them lying unused in junkyards across the United States, a generator that will turn rotary motion into direct current is not a challenging project. I built a simple one in elementary school, for example, and although it wasn’t really suited to wind turbine use – most of the structural elements were made from paperclips, with a toy horseshoe magnet to provide the field, and the amount of current it produced was just about enough to get a decent glow out of a very small light bulb – the principle can readily be scaled up.
In the kind of future we can realistically expect, in other words, homescale windpower will almost certainly be a viable technology, while giant wind turbines of the modern sort almost certainly won’t. Now of course it’s a safe bet that the windpower industry as it now exists will keep on building, servicing, and promoting giant wind turbines as long as it’s possible to do so, so the small chance that the giant turbines might actually be viable is covered. What isn’t covered yet is the very large chance that small wind turbines of the sort that can be built and maintained in a basement workshop could provide a real benefit during the difficult decades ahead of us.
In order to respond to that range of possibilities, homescale windpower units need to find their way back into the conversation of our time and, more importantly, up above the rooftops of homes across the modern world. Professionally manufactured wind turbines of the right scale are a good start, and those green wizards in training who have the money and lack the fairly modest technical skills to build their own could do worse than to buy and install one. Still, there’s also a huge role here for the homebuilt turbine, and for those individuals whose willingness to get to work shaping turbine blades and bolting together octet truss towers might, as things unfold, lead to a future career.
Promoters of giant wind turbines, and for that matter of centralized power generation schemes of all kinds, tend to talk quite a bit about economies of scale. In an expanding economy with a stable or growing resource base, that sort of talk often makes sense, though the extent to which those economies of scale are a product of direct and indirect government subsidies to transportation, financing, and large businesses generally is not something economists like to talk about. Still, in a world facing economic contraction, resource depletion, and a loss of complexity potentially capable of rendering a great deal of today’s infrastructure useless or worse, the balance swings the other way. In the face of a future where small, cheap, localized approaches that are sparing in their use of resources, relying on massive, expensive, centralized, resource-intensive power plants of any kind is not an economy but a profligacy of scale, and one that we very probably will not be able to afford for much longer.
Wednesday, June 08, 2011
A Bridge to Somewhere
Last week’s discussion of the twilight of the electrical grid in an age after abundance turned out to be timely, in an ironic sort of way. Whatever conversations it might have set in motion in the peak oil blogosphere were all but drowned out by a flurry of proclamations that some energy resource or other would keep the grid up and running for the foreseeable future.
Mind you, some of that flurry could have been lifted straight from equivalent discussions in the alternative energy field three decades ago. Fans of nuclear power were busy promoting their glow-in-the-dark solutions, of course, though for some reason fusion didn’t get dragged into the discussion; the folks at Livermore must have been busy doing something else this week. Meanwhile a longish essay posted on The Oil Drum, and widely cited elsewhere, insisted that satellite based solar power was the solution to the future’s energy problems. For connoisseurs of energy vaporware, this essay was a treat – a Dagwood sandwich of untried technologies, enthusiastic assumptions, and more than Panglossian optimism concerning the potential costs and downsides of pursuing a wholly untested and dizzyingly grandiose technological project at a time when the industrial world is so far into bankruptcy that it’s scrambling to keep its existing infrastructure from crumbling under its collective feet.
Still, the chief focus of the discussion was less dated, though attentive observers will have seen it coming some time ago. "Fracking" technology – more properly, "hydrofracturing," but only engineers call it that these days – is part of the toolkit that’s used to extract fossil fuels, and it’s become all the rage among those who want to believe that the age of cheap abundant energy isn’t dead yet. Thus there’s been a great many claims insisting either that natural gas will fuel our current lifestyles for the foreseeable future, or that it will provide a bridge to a future of renewable energy that will, again, keep our current lifestyles supplied with all the power we think we need.
Now of course fracking is a reality, and one that’s had a significant impact on natural gas production in the US already. Those of my readers who, in their younger days, shook up a bottle of soda pop good and hard, and then opened the cap, already know a good deal about the fracking process. Instead of shaking gas-bearing rock, fracking pumps in a mixture of water and toxic chemicals under high pressure, but the result is the same: bubbles of gas that were trapped in the rock (or the soda pop) come bubbling out all at once. If you want a sudden fountain, it’s not a bad approach, but anyone who’s tasted soda out of a thoroughly shaken bottle knows part of the downside: you get most of the gas in that first big splash, and very little is left behind
That’s one of the two big problems with fracking. (The other comes from the toxic chemicals just mentioned, which inevitably get into the local water supply with predictably ugly consequences.) Natural gas wells treated with fracking technology produce a lot of gas at first, but production slows to a trickle within a year or so. The same thing is true, interestingly enough, of petroleum wells treated the same way; the drop in production there can be anything up to 80% in the first year. Thus fracking isn’t the answer to our energy future, unless "future" in this case means the next five years at most.
Nor, it probably has to be said, is it a bridge to a future of mighty solar and wind plants that will keep millions of electric cars rolling down America’s highways. Even if that energy scenario was possible, and the evidence suggests that it’s not, it’s a safe bet that the energy made available by fracking won’t be used for that purpose. Those of us who were paying attention to energy issues back in the 1970s will recall claims that the Alaska North Slope would provide just such a bridge to just such a future.
Of course it did nothing of the kind. Instead, it enabled Americans to postpone the energy crisis for a few decades, and take the thirty-year vacation from reality that threw away our chances of a less than traumatic transition to the Age of Scarcity. The relatively brief gas and petroleum boom that we can expect from fracking might well permit a speeded-up replay of the same wretched spectacle: a few years of low energy costs, during which no provision will be made for the inevitable exhaustion of the stranded gas and oil reserves that fracking wells can effectively exploit, followed by a plunge into renewed crisis made even more severe by the ongoing depletion of other fossil fuel reserves. If it’s a bridge at all, it’s a bridge to nowhere.
Fueling a set of unsustainable lifestyles via unsustainable resource extraction, in other words, is not going to get us to sustainability. Of course the term "sustainability" has seen heavy service as a rhetorical weapon in recent years, and has come through the experience with a fair number of dents and scratches, but it’s not actually that difficult a concept to grasp – or, for that matter to define.
To be sustainable, something – a technology, a lifestyle, or what have you – has to be able to keep going indefinitely despite whatever limits the future will throw at it. Two categories of limits deserve particular attention here. The first, ecosystem limits, sums up the relation between whatever you’re considering and the nonhuman world. If something considered sustainable depends on using nonrenewable resources, for example, or on using otherwise renewable resources at a rate that exceeds the biosphere’s ability to renew them, it’s just flunked its sustainability test. Equally, if a technology or lifestyle or what have you puts things into the biosphere that disrupt the natural cycles of matter, energy, and information that keep the biosphere going, it’s not sustainable no matter how much green spraypaint you apply to it.
The role of ecosystem limits in sustainability is tolerably well understood. Less often grasped, because of its unwelcome implications, is the second category of limits that has to be addressed, which might best be called complexity limits. This category sums up the relation between a supposedly sustainable technology, lifestyle, etc., and the social, economic, and technological dimensions of human society, now and in the future. If those systems have a significant chance of dropping below the level of complexity at which your supposedly sustainable item can keep running, no matter how green it looks or how enduring it might be in the abstract, it’s not sustainable.
This is why, for example, I’ve suggested here that the internet is not going to make it very far into the post-abundance future. To keep the internet up and running takes a vastly complex technological structure, ranging from gigawatts of electricity from centralized power plants, through silicon chip factories and their supporting industries and supply chains, to universities that can train people in the wide range of exotic specialties that keep the net functioning. It also requires an economic system complex and rich enough, that the internet can pay its bills and outcompete other ways of providing the services that net users actually use. None of those are guaranteed, and in a world facing energy shortages, economic contraction, and attendant social and political disruption, the chances that today’s faltering industrial societies can maintain the technological and economic foundation for the internet look uncomfortably like those of a snowball in Beelzebub’s back yard.
The electricity grid, as suggested last week, suffers from much the same set of limits. Its ability to deal with ecosystem limits is open to question, since none of the alternatives to fossil fuels seem at all likely to provide a large enough amount of electricity, reliably enough, at a low enough cost to make the grid economically viable. Its ability to deal with complexity limits is at least as doubtful, since national or regional grids as currently constituted depend on an equally sprawling technological infrastructure and an equally complex set of economic arrangements.
It seems quite possible that local grids – for example, the size of a small city or a group of neighboring towns – could keep going over the long term, given a stable source of electricity close at hand. There were plenty of grids on that scale across America in the first half of the twentieth century, a point that suggests that the second half of the twenty-first century could see the reemergence of at least a few. Outside localities where this is an option, though, the only electricity that’s likely to be available to families and communities in the deindustrial future is whatever they can generate themselves.
Fortunately, home generation of electricity in modest but useful amounts is an option, and it’s one that those of my readers who are getting into the green wizardry discussed on this blog can start to explore in their own lives right now. What makes it a complex option, however, is the awkward fact that most of the options for home-generated electricity available right now fail the sustainability test in one way or another.
Photovoltaic (PV) power might as well be the poster child for this effect. PV chips are made by a variant of the same process that produces computer chips, and face the same problems with complexity limits as the economic and technological basis for fab plants and worldwide supply chains comes unglued. Though silicon, the raw material of most PV chips, is one of the most abundant elements on the planet, many of the other substances used in manufacturing solar panel systems are noticeably scarcer, and there are also issues with toxic wastes and other pollutants, so there are significant ecosystem limits to the technology as well.
All things considered, it’s probably a safe bet that within fifty years or so, PV cells will no longer be manufactured – not least because a technology we’ve already discussed, solar thermoelectric power, can produce electricity from sunlight using devices that a reasonably enterprising medieval alchemist could have put together. (Given that medieval alchemists pioneered the use of solar energy for distillation, using polished copper reflectors, this isn’t as strange a suggestion as it might seem.) Does this mean that PV panels should be off the list for green wizards today?
That depends on what your PV panels are intended to do, for there are two sides to the challenge that green wizardry is intended to meet. The first and most obvious task before us is to begin the process of creating and deploying prototype versions of sustainable lifestyles, homes, and communities, on a scale small and local enough that the inevitable mistakes and mischances can be managed. The second, which is too often neglected in discussions of the subject, is to meet the needs and reasonable wants of the people who are doing all this creating and deploying, during an age of economic contraction and technological unraveling when relying on the continued functioning of today’s massive and centralized systems could at any moment turn out to be a sucker’s bet.
Down the road, solar thermoelectric generators are likely to become one of the standard ways that households and small businesses provide themselves with a modest supply of electricity, while PV panels will be an exotic legacy from the industrial past where they’ve survived at all. There’s a fair amount of road to be covered between now and then, however, and during much of that time, those solar thermoelectric generators will be making the journey that runs from handbuilt prototypes in the backyards of basement-workshop inventors, through balky first-generation models of many different designs turned out by green entrepreneurs on shoestring budgets, to the shaking-out process from which the standard, sturdy, widely available models of the future will finally emerge.
During that time, those of my readers who don’t happen to have a talent for nonferrous metallurgy and electrical engineering may find PV panels a useful investment. The fact that those panels won’t be available fifty years from now doesn’t make them useless today, and someone whose main efforts are directed toward organic gardening, say, or some other dimension of the Green Wizard project, could do a lot worse than to cut her electricity use down to size and then provide the current she needs from a bank of solar panels and a stack of batteries. For that matter, even someone who’s hard at work in the basement lab assembling bimetallic strips and a parabolic reflector into a prototype thermoelectric generator might choose to retool his lifestyle in the meantime to work off a hundred watts or so of 12 volt power, and put up a few PV panels to provide that power while tinkering with the generator and getting it through the teething pains every experimental project gets to enjoy.
That is to say, PV panels can be used as a bridge. Unlike the natural gas being pumped out of the ground so frantically by fracking operations just now, it’s a bridge that leads somewhere – or, more precisely, it has the potential to be a bridge that leads somewhere, though it can also be used in less productive ways. The sort of grid-tied PV panel system that’s designed to feed 110 volts of alternating current into the grid, and can’t be used at all when the grid goes down – and yes, there are plenty of PV installations like that these days – is another bridge to nowhere; it’s designed to prop up a way of life with no future, or more precisely to go through the motions of propping up that way of life, and as often as not serving primarily as a status symbol in the meantime.
The land on the other side of the bridge, to extend the metaphor a bit further, will inevitably be a place where the inhabitants use a lot less electricity than people in the industrial world do today. Just as you need to weatherize before you solarize, to quote the appropriate tech motto from the Seventies, you thus need to make very serious cuts in your electricity use before you can realistically turn to renewable sources to meet the modest power needs that remain. Here again, any response to the predicament of our time that doesn’t start out with using much less – less energy, stuff, and stimulation – simply isn’t serious; it’s yet another bridge to nowhere.
There are quite a few potential bridges that lead somewhere, just as there are other technologies that aren’t bridges at all but fully sustainable options that will still be running long after the last PV cell stops working. In a world where the industrial nations didn’t take a thirty-year break from reality, it probably wouldn’t be necessary to use the bridges at all; in such a world, entrepreneurs would long since have followed up on the intriguing chapter on solar thermoelectric generators in Farrington Daniels’ Direct Use of the Sun’s Energy, and you’d be able to pick up neatly packaged systems with parabolic dishes on sturdy sun-tracking mounts at the better grade of hardware store, right next to the solar water heaters, the fireless cookers, and the racks of 12 volt household light bulbs.
Still, that’s not the world we live in. The world we live in is one in which a small minority of people are belatedly waking up to the ghastly predicament into which the misguided choices of recent decades have backed us, while most others are squeezing their eyes shut and covering their ears with their hands in a desperate attempt to keep from noticing the mess we’re in. In that kind of world, saving much of anything at all is going to involve quite a bit of last-minute scrambling and a fair number of temporary expedients and jerry-rigged makeshifts, and one feature that will likely be common to a great many of those latter is the use of resources extracted in one way or another from the disintegrating mass of our current industrial system.
Quite a few of our bridges to somewhere, in other words, are going to depend on a strategy that makes calculated use of the process of catabolic collapse now beginning to pick up speed in industrial America and elsewhere. I’ve got a few posts more worth of things to say about energy, and then we’ll begin talking in earnest about the third of the core elements of Green Wizardry, which is also the third great legacy from the alternative movement of the Seventies. Most people nowadays call it recycling, and that’s not a bad term at all, but it’s come to mean little more than putting out bins once a week so that diesel-powered trucks can come haul a fraction of your waste products back into the industrial system. The work we’ll be discussing is both more robust and more personal, and so it needs a different name; we’ll be calling it salvage.
Mind you, some of that flurry could have been lifted straight from equivalent discussions in the alternative energy field three decades ago. Fans of nuclear power were busy promoting their glow-in-the-dark solutions, of course, though for some reason fusion didn’t get dragged into the discussion; the folks at Livermore must have been busy doing something else this week. Meanwhile a longish essay posted on The Oil Drum, and widely cited elsewhere, insisted that satellite based solar power was the solution to the future’s energy problems. For connoisseurs of energy vaporware, this essay was a treat – a Dagwood sandwich of untried technologies, enthusiastic assumptions, and more than Panglossian optimism concerning the potential costs and downsides of pursuing a wholly untested and dizzyingly grandiose technological project at a time when the industrial world is so far into bankruptcy that it’s scrambling to keep its existing infrastructure from crumbling under its collective feet.
Still, the chief focus of the discussion was less dated, though attentive observers will have seen it coming some time ago. "Fracking" technology – more properly, "hydrofracturing," but only engineers call it that these days – is part of the toolkit that’s used to extract fossil fuels, and it’s become all the rage among those who want to believe that the age of cheap abundant energy isn’t dead yet. Thus there’s been a great many claims insisting either that natural gas will fuel our current lifestyles for the foreseeable future, or that it will provide a bridge to a future of renewable energy that will, again, keep our current lifestyles supplied with all the power we think we need.
Now of course fracking is a reality, and one that’s had a significant impact on natural gas production in the US already. Those of my readers who, in their younger days, shook up a bottle of soda pop good and hard, and then opened the cap, already know a good deal about the fracking process. Instead of shaking gas-bearing rock, fracking pumps in a mixture of water and toxic chemicals under high pressure, but the result is the same: bubbles of gas that were trapped in the rock (or the soda pop) come bubbling out all at once. If you want a sudden fountain, it’s not a bad approach, but anyone who’s tasted soda out of a thoroughly shaken bottle knows part of the downside: you get most of the gas in that first big splash, and very little is left behind
That’s one of the two big problems with fracking. (The other comes from the toxic chemicals just mentioned, which inevitably get into the local water supply with predictably ugly consequences.) Natural gas wells treated with fracking technology produce a lot of gas at first, but production slows to a trickle within a year or so. The same thing is true, interestingly enough, of petroleum wells treated the same way; the drop in production there can be anything up to 80% in the first year. Thus fracking isn’t the answer to our energy future, unless "future" in this case means the next five years at most.
Nor, it probably has to be said, is it a bridge to a future of mighty solar and wind plants that will keep millions of electric cars rolling down America’s highways. Even if that energy scenario was possible, and the evidence suggests that it’s not, it’s a safe bet that the energy made available by fracking won’t be used for that purpose. Those of us who were paying attention to energy issues back in the 1970s will recall claims that the Alaska North Slope would provide just such a bridge to just such a future.
Of course it did nothing of the kind. Instead, it enabled Americans to postpone the energy crisis for a few decades, and take the thirty-year vacation from reality that threw away our chances of a less than traumatic transition to the Age of Scarcity. The relatively brief gas and petroleum boom that we can expect from fracking might well permit a speeded-up replay of the same wretched spectacle: a few years of low energy costs, during which no provision will be made for the inevitable exhaustion of the stranded gas and oil reserves that fracking wells can effectively exploit, followed by a plunge into renewed crisis made even more severe by the ongoing depletion of other fossil fuel reserves. If it’s a bridge at all, it’s a bridge to nowhere.
Fueling a set of unsustainable lifestyles via unsustainable resource extraction, in other words, is not going to get us to sustainability. Of course the term "sustainability" has seen heavy service as a rhetorical weapon in recent years, and has come through the experience with a fair number of dents and scratches, but it’s not actually that difficult a concept to grasp – or, for that matter to define.
To be sustainable, something – a technology, a lifestyle, or what have you – has to be able to keep going indefinitely despite whatever limits the future will throw at it. Two categories of limits deserve particular attention here. The first, ecosystem limits, sums up the relation between whatever you’re considering and the nonhuman world. If something considered sustainable depends on using nonrenewable resources, for example, or on using otherwise renewable resources at a rate that exceeds the biosphere’s ability to renew them, it’s just flunked its sustainability test. Equally, if a technology or lifestyle or what have you puts things into the biosphere that disrupt the natural cycles of matter, energy, and information that keep the biosphere going, it’s not sustainable no matter how much green spraypaint you apply to it.
The role of ecosystem limits in sustainability is tolerably well understood. Less often grasped, because of its unwelcome implications, is the second category of limits that has to be addressed, which might best be called complexity limits. This category sums up the relation between a supposedly sustainable technology, lifestyle, etc., and the social, economic, and technological dimensions of human society, now and in the future. If those systems have a significant chance of dropping below the level of complexity at which your supposedly sustainable item can keep running, no matter how green it looks or how enduring it might be in the abstract, it’s not sustainable.
This is why, for example, I’ve suggested here that the internet is not going to make it very far into the post-abundance future. To keep the internet up and running takes a vastly complex technological structure, ranging from gigawatts of electricity from centralized power plants, through silicon chip factories and their supporting industries and supply chains, to universities that can train people in the wide range of exotic specialties that keep the net functioning. It also requires an economic system complex and rich enough, that the internet can pay its bills and outcompete other ways of providing the services that net users actually use. None of those are guaranteed, and in a world facing energy shortages, economic contraction, and attendant social and political disruption, the chances that today’s faltering industrial societies can maintain the technological and economic foundation for the internet look uncomfortably like those of a snowball in Beelzebub’s back yard.
The electricity grid, as suggested last week, suffers from much the same set of limits. Its ability to deal with ecosystem limits is open to question, since none of the alternatives to fossil fuels seem at all likely to provide a large enough amount of electricity, reliably enough, at a low enough cost to make the grid economically viable. Its ability to deal with complexity limits is at least as doubtful, since national or regional grids as currently constituted depend on an equally sprawling technological infrastructure and an equally complex set of economic arrangements.
It seems quite possible that local grids – for example, the size of a small city or a group of neighboring towns – could keep going over the long term, given a stable source of electricity close at hand. There were plenty of grids on that scale across America in the first half of the twentieth century, a point that suggests that the second half of the twenty-first century could see the reemergence of at least a few. Outside localities where this is an option, though, the only electricity that’s likely to be available to families and communities in the deindustrial future is whatever they can generate themselves.
Fortunately, home generation of electricity in modest but useful amounts is an option, and it’s one that those of my readers who are getting into the green wizardry discussed on this blog can start to explore in their own lives right now. What makes it a complex option, however, is the awkward fact that most of the options for home-generated electricity available right now fail the sustainability test in one way or another.
Photovoltaic (PV) power might as well be the poster child for this effect. PV chips are made by a variant of the same process that produces computer chips, and face the same problems with complexity limits as the economic and technological basis for fab plants and worldwide supply chains comes unglued. Though silicon, the raw material of most PV chips, is one of the most abundant elements on the planet, many of the other substances used in manufacturing solar panel systems are noticeably scarcer, and there are also issues with toxic wastes and other pollutants, so there are significant ecosystem limits to the technology as well.
All things considered, it’s probably a safe bet that within fifty years or so, PV cells will no longer be manufactured – not least because a technology we’ve already discussed, solar thermoelectric power, can produce electricity from sunlight using devices that a reasonably enterprising medieval alchemist could have put together. (Given that medieval alchemists pioneered the use of solar energy for distillation, using polished copper reflectors, this isn’t as strange a suggestion as it might seem.) Does this mean that PV panels should be off the list for green wizards today?
That depends on what your PV panels are intended to do, for there are two sides to the challenge that green wizardry is intended to meet. The first and most obvious task before us is to begin the process of creating and deploying prototype versions of sustainable lifestyles, homes, and communities, on a scale small and local enough that the inevitable mistakes and mischances can be managed. The second, which is too often neglected in discussions of the subject, is to meet the needs and reasonable wants of the people who are doing all this creating and deploying, during an age of economic contraction and technological unraveling when relying on the continued functioning of today’s massive and centralized systems could at any moment turn out to be a sucker’s bet.
Down the road, solar thermoelectric generators are likely to become one of the standard ways that households and small businesses provide themselves with a modest supply of electricity, while PV panels will be an exotic legacy from the industrial past where they’ve survived at all. There’s a fair amount of road to be covered between now and then, however, and during much of that time, those solar thermoelectric generators will be making the journey that runs from handbuilt prototypes in the backyards of basement-workshop inventors, through balky first-generation models of many different designs turned out by green entrepreneurs on shoestring budgets, to the shaking-out process from which the standard, sturdy, widely available models of the future will finally emerge.
During that time, those of my readers who don’t happen to have a talent for nonferrous metallurgy and electrical engineering may find PV panels a useful investment. The fact that those panels won’t be available fifty years from now doesn’t make them useless today, and someone whose main efforts are directed toward organic gardening, say, or some other dimension of the Green Wizard project, could do a lot worse than to cut her electricity use down to size and then provide the current she needs from a bank of solar panels and a stack of batteries. For that matter, even someone who’s hard at work in the basement lab assembling bimetallic strips and a parabolic reflector into a prototype thermoelectric generator might choose to retool his lifestyle in the meantime to work off a hundred watts or so of 12 volt power, and put up a few PV panels to provide that power while tinkering with the generator and getting it through the teething pains every experimental project gets to enjoy.
That is to say, PV panels can be used as a bridge. Unlike the natural gas being pumped out of the ground so frantically by fracking operations just now, it’s a bridge that leads somewhere – or, more precisely, it has the potential to be a bridge that leads somewhere, though it can also be used in less productive ways. The sort of grid-tied PV panel system that’s designed to feed 110 volts of alternating current into the grid, and can’t be used at all when the grid goes down – and yes, there are plenty of PV installations like that these days – is another bridge to nowhere; it’s designed to prop up a way of life with no future, or more precisely to go through the motions of propping up that way of life, and as often as not serving primarily as a status symbol in the meantime.
The land on the other side of the bridge, to extend the metaphor a bit further, will inevitably be a place where the inhabitants use a lot less electricity than people in the industrial world do today. Just as you need to weatherize before you solarize, to quote the appropriate tech motto from the Seventies, you thus need to make very serious cuts in your electricity use before you can realistically turn to renewable sources to meet the modest power needs that remain. Here again, any response to the predicament of our time that doesn’t start out with using much less – less energy, stuff, and stimulation – simply isn’t serious; it’s yet another bridge to nowhere.
There are quite a few potential bridges that lead somewhere, just as there are other technologies that aren’t bridges at all but fully sustainable options that will still be running long after the last PV cell stops working. In a world where the industrial nations didn’t take a thirty-year break from reality, it probably wouldn’t be necessary to use the bridges at all; in such a world, entrepreneurs would long since have followed up on the intriguing chapter on solar thermoelectric generators in Farrington Daniels’ Direct Use of the Sun’s Energy, and you’d be able to pick up neatly packaged systems with parabolic dishes on sturdy sun-tracking mounts at the better grade of hardware store, right next to the solar water heaters, the fireless cookers, and the racks of 12 volt household light bulbs.
Still, that’s not the world we live in. The world we live in is one in which a small minority of people are belatedly waking up to the ghastly predicament into which the misguided choices of recent decades have backed us, while most others are squeezing their eyes shut and covering their ears with their hands in a desperate attempt to keep from noticing the mess we’re in. In that kind of world, saving much of anything at all is going to involve quite a bit of last-minute scrambling and a fair number of temporary expedients and jerry-rigged makeshifts, and one feature that will likely be common to a great many of those latter is the use of resources extracted in one way or another from the disintegrating mass of our current industrial system.
Quite a few of our bridges to somewhere, in other words, are going to depend on a strategy that makes calculated use of the process of catabolic collapse now beginning to pick up speed in industrial America and elsewhere. I’ve got a few posts more worth of things to say about energy, and then we’ll begin talking in earnest about the third of the core elements of Green Wizardry, which is also the third great legacy from the alternative movement of the Seventies. Most people nowadays call it recycling, and that’s not a bad term at all, but it’s come to mean little more than putting out bins once a week so that diesel-powered trucks can come haul a fraction of your waste products back into the industrial system. The work we’ll be discussing is both more robust and more personal, and so it needs a different name; we’ll be calling it salvage.
Wednesday, June 01, 2011
In The World After Abundance
Over the past month or so the essays on this blog have veered away from the details of appropriate tech into a discussion of some of the reasons why this kind of tech is, in fact, appropriate as a response to the predicament of industrial society. That was a necessary diversion, since a great many of the narratives that cluster around that crisis just now tend to evade the necessity of change on the level of individual lifestyles. The roots of that evasion had to be explored in order to show that change on that level is exactly what can’t be avoided by any serious response to the crisis of our time.
Still, if it’s going to do any good, that awareness has to be paired with something more than a vague sense that action is necessary. Talk, as Zen masters are fond of saying, does not boil the rice; in the rather more formal language of the traditions of Western esotericism where I received a good deal of my training, the planes of being are discrete and not continuous, which means in practice that even the clearest sense of how we collectively backed ourselves into the present mess isn’t going to bring in food from the garden, keep warmth from leaking out of the house on a cold winter night, or provide a modest amount of electricity for those bits of modern or not-quite-modern technology that will still make sense, and still yield benefits, in the world after abundance.
That last phrase is the crucial one. In the future ahead of us, the extravagant habits of the recent past and the present will no longer be an option. Those habits include most of what people in the industrial world nowadays like to consider the basic amenities of a normal lifestyle, or even the necessities of life. An unwillingness to take a hard look at the assumptions underlying our current notion of what a normal lifestyle comprises has driven a certain amount of wishful thinking, and roughly the same amount of unnecessary dread, among those who have begun to grapple with the challenges ahead of us.
One of the best examples I can think of is provided by the ubiquitous wall sockets that, in nearly every home in the industrial world, provide as much electric current on demand as the residents want and can pay for. In most circles these days, when conversations turn to the prospects of energy for the future, the belief that the only possible way to use electricity is to keep uninterrupted power flowing to those sockets is very nearly as sacrosanct as the belief that the only possible way to handle transportation is to find some way to keep hundreds of millions of private cars fueled with as much ethanol, or biodiesel, or electricity, or what have you, as their drivers can afford. Both these beliefs take the temporary habits of an age of excess and treat them as necessities, and both of them box our collective imagination into a futile quest to sustain the unsustainable instead of looking at other options that are well within reach even this late in the game.
The sheer inefficiency of today’s habits of electrical generation, distribution, and use is rarely recognized. Behind those wall sockets lies what is very probably the world’s largest single system of infrastructure, an immense network linking huge power plants and end users via a crazy spiderweb of transmission lines covering whole continents. To keep electricity in those lines, vast amounts of fuel are burnt every day to generate heat, which produces steam, which drives turbines, which turn generators, which put voltage onto the lines; at each of these transformations of energy from one form to another, the laws of thermodynamics take their toll, and as a result only about a third of the potential energy in the fuel finds its way to the wall socket. Losses to entropy of the same order of magnitude also take place when electricity is generated by other means – hydroelectricity, wind power or what have you – because of parallel limits hardwired into the laws of physics.
When the resulting current comes out of the wall sockets, in turn, equivalent losses take place on the other end. Most electricity in today’s industrial societies gets turned into light, heat, or mechanical motion at its end use, and each of these transformations involves unavoidable inefficiencies. Furthermore, a very large fraction of today’s end uses of electricity are things that could be done just as well without it, with the application of a little ordinary muscle power or some other readily available energy source. That’s not even counting the gigawatts that go into lighting, cooling and heating unoccupied rooms, keeping electronic devices on unnecessary standby, drowning out the stars with light pollution, and, well, let’s not even start talking about Wii.
Having an energy system geared to so grandiose a level of excess seemed to make sense in the days when fossil fuels were cheap and abundant. Quite a few absurd things seemed to make sense in those days, and even when they no longer make any sense at all, the habits of that brief interval continue to dominate contemporary thought to an embarrassing degree. Notice how our economic system, as well as nearly all economists, still act as though replacing human labor with fossil fuel-derived energy is always a good idea, even at a time when unemployment is pandemic and the cost of energy is a rising burden on economies around the world.
The same fixation on maintaining the extravagant habits of the recent past still holds most discussions of energy hostage. Every source of electrical power these days is measured against the yardstick of whether it could provide enough cheap, abundant, reliable, continuous power to keep our existing electrical grids running. Proponents of each of the various contenders trot out an assortment of canned studies insisting that their preferred energy technology can do just that, while challenging competing systems with equally canned studies that insist that no other option will work.
Given the billions of dollars that have already been paid out to the winners in these competitions, and the trillions more that will likely follow, this sort of propaganda dolled up in scientific drag will most likely continue to be standard practice until the money and other resources for grandiose projects simply aren’t there any more. Meanwhile, there’s really no way to be sure in advance that any of the options can keep the grids running, and if there is, the chance that the one that ends up clawing its way to the top of the heap in the political free-for-all now under way will just happen to be one that will do the trick is not exactly something on which I’d choose to bet.
The difficulty here is that most current conversations about the future of energy are trying to figure out an answer without first making sure that what’s being asked is the right question. “How can we keep an electrical grid designed around the unquestioned availability of cheap abundant energy?” is the obvious question, and it’s also the wrong one. The right question – the question that we should be asking – is something more like “How much electricity can we count on having in a future after fossil fuels, and what are the best ways to produce, distribute, and use it?” That question has hardly been asked at all. It’s high time to remedy that omission.
There are many reasons for thinking, in fact, that trying to maintain an electrical grid on a regional or national scale in a future of scarce energy is a fool’s game. To run a large-scale grid of the sort currently in use, you need to be able to produce huge amounts of power every second of every day. It’s very difficult to get that much power that reliably by any means other than burning a lot of fossil fuels, either directly – say, in a coal- or gas-fired power plant – or indirectly. Tot up the total energy content of the fossil fuels needed to mine and refine uranium and urn it into fuel rods, to build, maintain, and decommission a nuclear reactor, to deal with the short-term and long-term waste, and to account for a share of the energy cost of the inevitable accidents, for example, and you’ll have a sense of the scale of the energy subsidies from fossil fuels that prop up nuclear power; do the same math for today’s giant wind turbines, and a similar realization is in store. Lacking these subsidies, it’s probably a safe bet that nuclear reactors and giant wind turbines can’t be built or maintained at all.
Still, an important point is generally missed here. Gigawatts of power are necessary for an electrical power grid. They aren’t necessary for any one of the homes and small businesses that make up the great numerical majority of end users. Get rid of the pointless excess that dominates our current approach to energy, and limit your use of electricity to the things it actually does better than other readily available energy sources, and a 12 volt circuit at very modest wattage is very often all you need. Powering a 12 volt circuit at modest wattage is child’s play, and can be done by any of a baker’s dozen or so of readily accessible technologies that can be built, maintained, and used by any moderately skilled handyperson.
Equally, having all that power on call every second of every day is necessary for an electrical grid of the modern kind. It’s not actually necessary for homes and small businesses. Again, get rid of social habits that amount to wasting energy for the sake of wasting energy, and it’s not that hard to live with an intermittent electrical supply, either by using electricity whenever it happens to be available and not otherwise, or by using batteries to store up current for a short time until you need it.
Seventy and eighty years ago, this latter was standard practice in a great many American homes. One of my vintage radio textbooks, A. and M. Marcus’ excellent Elements of Radio, dates from those days. At that time radio was the hot new technology, and even out in farm country, where rural electrification took its sweet time to arrive, most families who could scrape together the cash had a radio in the parlor, linking them to news, music, and other cultural resources from hundreds of miles away. Where did they get the power? Batteries, two of them per radio: an A battery to power the filaments on the vacuum tubes and a B battery to provide the working current. The A battery needed frequent recharging, and wind power was among the options for that; the iconic and ubiquitous windmills of rural America three quarters of a century ago had plenty of uses, and as often as not, that was one of them.
Long before electrical grids extended out of America’s urban cores, in fact, it was fairly common for households elsewhere in the country to have a modest amount of electricity to hand. There are a few things electricity does more efficently than any other form of energy – radio, broadcast or two-way; other electronic devices such as the phonograph; safe, smokeless lighting for the parlor and the kitchen for a few hours after sunset – and those were what people at that time did with electricity. (Nowadays a well-insulated refrigerator and the pump for a closed-loop active solar water heater might be worth adding to the same list.) Those things that electricity only does inefficiently and other energy sources do well – for example, providing diffuse heat or high-torque mechanical energy – people did by other means. Fairly often, those other means required a certain amount of muscle power, but that’s an inevitable reality of life in a world after abundance.
The distinction between those things electricity does efficiently, and those things that it doesn’t, is as important to keep in mind as it’s commonly neglected. Kris de Decker, in a recent and useful article on pedal powered technologies in Low-tech Magazine, has done a good job of mapping out the issues involved. He points out that most pedal power devices currently on the market use the back wheel of a bicycle to run a generator, and then use the electricity produced by the generator to do something. For most uses, this is hopelessly inefficient, since every transformation of energy from one form to another involves losses to entropy which can be saved by leaving the energy in its original form. How serious are the losses? Enough that you’ll be pedaling two to three times as long to do the same task with electricity as you would if the bicycle’s mechanical power did it directly.
If you want to power a blender to make yourself margaritas on hot summer days, for example, it’s a substantial waste of energy – your energy, expressed in sweat and tired muscles – to hook your bicycle to a generator and wire up the generator to the motor that drives the blender. The more efficient option is to use the mechanical motion of the bicycle wheel to spin the blender blades directly; there are still losses to entropy, of course, but they’re a small fraction of what they would be if you stick a generator and motor in the middle where they’re not needed.
The same principle applies to a great many other things that are currently done by means of electricity. Regular readers of this blog will readily be able to think of another example, since I’ve discussed more than once the misunderstandings that bedevil solar energy. They come from the same set of blinders as the notion that pedal power ought to be used to generate electricity, rather than being used to drive the mechanical motion a great deal of today’s electricity is used to drive. Sunlight can be turned into electricity on a small scale in several different ways; none of them are very efficient, and they’re all intermitted and difficult to scale up, but several are quite good enough to drive the sort of small-scale 12 volt system discussed here if you’ve got a good southern exposure. What sunlight does with great efficiency, on the other hand, is convert itself to diffuse heat – the sort of heat that will warm a room, heat a bath, or bake a loaf of bread in a solar oven. When planning for solar energy, in other words, it’s best to do as much as possible with the diffuse heat sunlight provides so readily, and convert sunlight to electricity only for the handful of uses where electricity is the only thing, or the best thing, for the job.
Apply the same logic across the board and you end up with the most probable energy system of a world after abundance: a patchwork of different energy sources and applications, right down to the level of the individual household or business. In the American households of three quarters of a century ago I mentioned earlier in this post, that was perfectly normal; the radio ran off the A and B batteries, the stove was powered by wood from the woodlot, two lamps in the parlor ran off batteries charged by the windmill while the rest burnt kerosene, the sewing machine ran off a foot-operated treadle, the water was pumped by the windmill and heated by the sun – yes, solar water heaters were hugely popular in the 1920s, especially but not only in the Sun Belt. One consequence of this crazy quilt of energy options is that if something disrupted access to any one source of energy, the rest of the household chugged on unaffected. Compare that to the electricity-dependent household of the present, where a blackout renders the whole household inoperable and quite possibly unlivable.
The crucial point to take away from all this, though, is that expectations formed by the extravagance of the recent past are not a useful guide to the best options available to us in the post-peak future. It’s a safe bet, of course, that plenty of resources will be thrown down a dizzying assortment of ratholes in the attempt to keep the infrastructure of the age of abundance up and running even as the abundance itself trickles away. Long after private cars have stopped making any kind of economic sense, for example, what’s left of the American economy will still be being jiggered and poked in an attempt to keep some mummified simulacrum of an auto industry propped up in its corner, and no doubt similar efforts will be made to support the big regional grids even when the impact of shutting them down would be less of an economic burden than the cost of keeping them going. That’s why it’s all the more crucial for individuals, families, and community groups to start shifting over to the habits of energy use that will make sense in the world after abundance, to work through the learning curve and develop the skills and technologies that will be there to pick up the pieces when the legacy technologies of our fading age of excess finally grind to a halt.
Still, if it’s going to do any good, that awareness has to be paired with something more than a vague sense that action is necessary. Talk, as Zen masters are fond of saying, does not boil the rice; in the rather more formal language of the traditions of Western esotericism where I received a good deal of my training, the planes of being are discrete and not continuous, which means in practice that even the clearest sense of how we collectively backed ourselves into the present mess isn’t going to bring in food from the garden, keep warmth from leaking out of the house on a cold winter night, or provide a modest amount of electricity for those bits of modern or not-quite-modern technology that will still make sense, and still yield benefits, in the world after abundance.
That last phrase is the crucial one. In the future ahead of us, the extravagant habits of the recent past and the present will no longer be an option. Those habits include most of what people in the industrial world nowadays like to consider the basic amenities of a normal lifestyle, or even the necessities of life. An unwillingness to take a hard look at the assumptions underlying our current notion of what a normal lifestyle comprises has driven a certain amount of wishful thinking, and roughly the same amount of unnecessary dread, among those who have begun to grapple with the challenges ahead of us.
One of the best examples I can think of is provided by the ubiquitous wall sockets that, in nearly every home in the industrial world, provide as much electric current on demand as the residents want and can pay for. In most circles these days, when conversations turn to the prospects of energy for the future, the belief that the only possible way to use electricity is to keep uninterrupted power flowing to those sockets is very nearly as sacrosanct as the belief that the only possible way to handle transportation is to find some way to keep hundreds of millions of private cars fueled with as much ethanol, or biodiesel, or electricity, or what have you, as their drivers can afford. Both these beliefs take the temporary habits of an age of excess and treat them as necessities, and both of them box our collective imagination into a futile quest to sustain the unsustainable instead of looking at other options that are well within reach even this late in the game.
The sheer inefficiency of today’s habits of electrical generation, distribution, and use is rarely recognized. Behind those wall sockets lies what is very probably the world’s largest single system of infrastructure, an immense network linking huge power plants and end users via a crazy spiderweb of transmission lines covering whole continents. To keep electricity in those lines, vast amounts of fuel are burnt every day to generate heat, which produces steam, which drives turbines, which turn generators, which put voltage onto the lines; at each of these transformations of energy from one form to another, the laws of thermodynamics take their toll, and as a result only about a third of the potential energy in the fuel finds its way to the wall socket. Losses to entropy of the same order of magnitude also take place when electricity is generated by other means – hydroelectricity, wind power or what have you – because of parallel limits hardwired into the laws of physics.
When the resulting current comes out of the wall sockets, in turn, equivalent losses take place on the other end. Most electricity in today’s industrial societies gets turned into light, heat, or mechanical motion at its end use, and each of these transformations involves unavoidable inefficiencies. Furthermore, a very large fraction of today’s end uses of electricity are things that could be done just as well without it, with the application of a little ordinary muscle power or some other readily available energy source. That’s not even counting the gigawatts that go into lighting, cooling and heating unoccupied rooms, keeping electronic devices on unnecessary standby, drowning out the stars with light pollution, and, well, let’s not even start talking about Wii.
Having an energy system geared to so grandiose a level of excess seemed to make sense in the days when fossil fuels were cheap and abundant. Quite a few absurd things seemed to make sense in those days, and even when they no longer make any sense at all, the habits of that brief interval continue to dominate contemporary thought to an embarrassing degree. Notice how our economic system, as well as nearly all economists, still act as though replacing human labor with fossil fuel-derived energy is always a good idea, even at a time when unemployment is pandemic and the cost of energy is a rising burden on economies around the world.
The same fixation on maintaining the extravagant habits of the recent past still holds most discussions of energy hostage. Every source of electrical power these days is measured against the yardstick of whether it could provide enough cheap, abundant, reliable, continuous power to keep our existing electrical grids running. Proponents of each of the various contenders trot out an assortment of canned studies insisting that their preferred energy technology can do just that, while challenging competing systems with equally canned studies that insist that no other option will work.
Given the billions of dollars that have already been paid out to the winners in these competitions, and the trillions more that will likely follow, this sort of propaganda dolled up in scientific drag will most likely continue to be standard practice until the money and other resources for grandiose projects simply aren’t there any more. Meanwhile, there’s really no way to be sure in advance that any of the options can keep the grids running, and if there is, the chance that the one that ends up clawing its way to the top of the heap in the political free-for-all now under way will just happen to be one that will do the trick is not exactly something on which I’d choose to bet.
The difficulty here is that most current conversations about the future of energy are trying to figure out an answer without first making sure that what’s being asked is the right question. “How can we keep an electrical grid designed around the unquestioned availability of cheap abundant energy?” is the obvious question, and it’s also the wrong one. The right question – the question that we should be asking – is something more like “How much electricity can we count on having in a future after fossil fuels, and what are the best ways to produce, distribute, and use it?” That question has hardly been asked at all. It’s high time to remedy that omission.
There are many reasons for thinking, in fact, that trying to maintain an electrical grid on a regional or national scale in a future of scarce energy is a fool’s game. To run a large-scale grid of the sort currently in use, you need to be able to produce huge amounts of power every second of every day. It’s very difficult to get that much power that reliably by any means other than burning a lot of fossil fuels, either directly – say, in a coal- or gas-fired power plant – or indirectly. Tot up the total energy content of the fossil fuels needed to mine and refine uranium and urn it into fuel rods, to build, maintain, and decommission a nuclear reactor, to deal with the short-term and long-term waste, and to account for a share of the energy cost of the inevitable accidents, for example, and you’ll have a sense of the scale of the energy subsidies from fossil fuels that prop up nuclear power; do the same math for today’s giant wind turbines, and a similar realization is in store. Lacking these subsidies, it’s probably a safe bet that nuclear reactors and giant wind turbines can’t be built or maintained at all.
Still, an important point is generally missed here. Gigawatts of power are necessary for an electrical power grid. They aren’t necessary for any one of the homes and small businesses that make up the great numerical majority of end users. Get rid of the pointless excess that dominates our current approach to energy, and limit your use of electricity to the things it actually does better than other readily available energy sources, and a 12 volt circuit at very modest wattage is very often all you need. Powering a 12 volt circuit at modest wattage is child’s play, and can be done by any of a baker’s dozen or so of readily accessible technologies that can be built, maintained, and used by any moderately skilled handyperson.
Equally, having all that power on call every second of every day is necessary for an electrical grid of the modern kind. It’s not actually necessary for homes and small businesses. Again, get rid of social habits that amount to wasting energy for the sake of wasting energy, and it’s not that hard to live with an intermittent electrical supply, either by using electricity whenever it happens to be available and not otherwise, or by using batteries to store up current for a short time until you need it.
Seventy and eighty years ago, this latter was standard practice in a great many American homes. One of my vintage radio textbooks, A. and M. Marcus’ excellent Elements of Radio, dates from those days. At that time radio was the hot new technology, and even out in farm country, where rural electrification took its sweet time to arrive, most families who could scrape together the cash had a radio in the parlor, linking them to news, music, and other cultural resources from hundreds of miles away. Where did they get the power? Batteries, two of them per radio: an A battery to power the filaments on the vacuum tubes and a B battery to provide the working current. The A battery needed frequent recharging, and wind power was among the options for that; the iconic and ubiquitous windmills of rural America three quarters of a century ago had plenty of uses, and as often as not, that was one of them.
Long before electrical grids extended out of America’s urban cores, in fact, it was fairly common for households elsewhere in the country to have a modest amount of electricity to hand. There are a few things electricity does more efficently than any other form of energy – radio, broadcast or two-way; other electronic devices such as the phonograph; safe, smokeless lighting for the parlor and the kitchen for a few hours after sunset – and those were what people at that time did with electricity. (Nowadays a well-insulated refrigerator and the pump for a closed-loop active solar water heater might be worth adding to the same list.) Those things that electricity only does inefficiently and other energy sources do well – for example, providing diffuse heat or high-torque mechanical energy – people did by other means. Fairly often, those other means required a certain amount of muscle power, but that’s an inevitable reality of life in a world after abundance.
The distinction between those things electricity does efficiently, and those things that it doesn’t, is as important to keep in mind as it’s commonly neglected. Kris de Decker, in a recent and useful article on pedal powered technologies in Low-tech Magazine, has done a good job of mapping out the issues involved. He points out that most pedal power devices currently on the market use the back wheel of a bicycle to run a generator, and then use the electricity produced by the generator to do something. For most uses, this is hopelessly inefficient, since every transformation of energy from one form to another involves losses to entropy which can be saved by leaving the energy in its original form. How serious are the losses? Enough that you’ll be pedaling two to three times as long to do the same task with electricity as you would if the bicycle’s mechanical power did it directly.
If you want to power a blender to make yourself margaritas on hot summer days, for example, it’s a substantial waste of energy – your energy, expressed in sweat and tired muscles – to hook your bicycle to a generator and wire up the generator to the motor that drives the blender. The more efficient option is to use the mechanical motion of the bicycle wheel to spin the blender blades directly; there are still losses to entropy, of course, but they’re a small fraction of what they would be if you stick a generator and motor in the middle where they’re not needed.
The same principle applies to a great many other things that are currently done by means of electricity. Regular readers of this blog will readily be able to think of another example, since I’ve discussed more than once the misunderstandings that bedevil solar energy. They come from the same set of blinders as the notion that pedal power ought to be used to generate electricity, rather than being used to drive the mechanical motion a great deal of today’s electricity is used to drive. Sunlight can be turned into electricity on a small scale in several different ways; none of them are very efficient, and they’re all intermitted and difficult to scale up, but several are quite good enough to drive the sort of small-scale 12 volt system discussed here if you’ve got a good southern exposure. What sunlight does with great efficiency, on the other hand, is convert itself to diffuse heat – the sort of heat that will warm a room, heat a bath, or bake a loaf of bread in a solar oven. When planning for solar energy, in other words, it’s best to do as much as possible with the diffuse heat sunlight provides so readily, and convert sunlight to electricity only for the handful of uses where electricity is the only thing, or the best thing, for the job.
Apply the same logic across the board and you end up with the most probable energy system of a world after abundance: a patchwork of different energy sources and applications, right down to the level of the individual household or business. In the American households of three quarters of a century ago I mentioned earlier in this post, that was perfectly normal; the radio ran off the A and B batteries, the stove was powered by wood from the woodlot, two lamps in the parlor ran off batteries charged by the windmill while the rest burnt kerosene, the sewing machine ran off a foot-operated treadle, the water was pumped by the windmill and heated by the sun – yes, solar water heaters were hugely popular in the 1920s, especially but not only in the Sun Belt. One consequence of this crazy quilt of energy options is that if something disrupted access to any one source of energy, the rest of the household chugged on unaffected. Compare that to the electricity-dependent household of the present, where a blackout renders the whole household inoperable and quite possibly unlivable.
The crucial point to take away from all this, though, is that expectations formed by the extravagance of the recent past are not a useful guide to the best options available to us in the post-peak future. It’s a safe bet, of course, that plenty of resources will be thrown down a dizzying assortment of ratholes in the attempt to keep the infrastructure of the age of abundance up and running even as the abundance itself trickles away. Long after private cars have stopped making any kind of economic sense, for example, what’s left of the American economy will still be being jiggered and poked in an attempt to keep some mummified simulacrum of an auto industry propped up in its corner, and no doubt similar efforts will be made to support the big regional grids even when the impact of shutting them down would be less of an economic burden than the cost of keeping them going. That’s why it’s all the more crucial for individuals, families, and community groups to start shifting over to the habits of energy use that will make sense in the world after abundance, to work through the learning curve and develop the skills and technologies that will be there to pick up the pieces when the legacy technologies of our fading age of excess finally grind to a halt.